Hidden Markov Models

Notes of https://web.stanford.edu/~jurafsky/slp3/A.pdf

Xiachong Feng

Outline

* Markov Chains

* The Hidden Markov Model

* Likelihood Computation: The Forward Algorithm
* Decoding: The Viterbi Algorithm

e HMM Training: The Forward-Backward Algorithm

* Summary

Markov Chains

* What is Markov Chains ?
* A Markov chain is a model that tells us something about the
probabilities of sequences of random variables, states, each of

which can take on values from some set.

v p(wilw))

bigram Iar{Ehage model
A Markov chain for weather (a) and one for words (b), showing states and
transitions. A start distribution 7 is required; setting 7 = [0.1, 0.7, 0.2] for (a) would mean a
probability 0.7 of starting in state 2 (cold), probability 0.1 of starting in state 1 (hot), etc.

Markov Chains

* Markov Assumption

* when predicting the future, the past doesn’t matter, only the present.

Markov Assumption: P(q; = alq...qi—1) = P(q; = a|qi—1) | 9: state variables

* Components

0=q192...9n a set of N states

A=aa2...an1...azy, a transition probability matrix A, each a;; represent-
ing the probability of moving from state i to state j, s.t.
Z?:] ajj — 1 Vi

T=T,M,.... N an initial probability distribution over states. 7; is the
probability that the Markov chain will start in state i.
Some states j may have 7; = 0, meaning that they cannot
be initial states. Also, > " | m; =1

The Hidden Markov Model

Hidden Markov model (HMM)

* allows us to talk about both observed events (like words that we

see in the input) and hidden events (like part-of-speech tags) that

we think of as causal factors in our probabilistic model.

Components

O=q192...9n
A=a11...a,-j...aNN

020]02...07-

B = bi(O,) P(Si->0t)

T=m,T,....,TN

a set of N states

a transition probability matrix A, each a;; representing the probability
of moving from state i to state j, s.t. 27:1 ayj=1 Vi

a sequence of 7" observations, each one drawn from a vocabulary V =
V1,V24.00, VY

a sequence of observation likelihoods, also called emission probabili-

ties, each expressing the probability of an observation o; being generated
from a state i

an initial probability distribution over states. 7; is the probability that
the Markov chain will start in state i. Some states j may have 7; = 0,
meaning that they cannot be initial states. Also, Y 7 | m; = 1

The Hidden Markov Model

* First-order hidden Markov model
* Markov Assumption: the probability of a particular state depends

only on the previous state

: T—RZIBRSRNHAPRSEX
Markov Assumption: P(qi|q1...gi—1) = P(qi|qi—1)

* Output Independence: the probability of an output observation oi

depends only on the state that produced the observation

WL SR A pRX ML AR SR X
Output Independence: P(0;|q1...Giy---,q7,01,---,0i,...,07) = P(0i|g;)

each hidden state produces only a single observation

Example-Eisner task

* Task definition
. Wl : SRIEKEEHIER : :
Given a sequence of observations 59 feacﬁ an integer representing the
number of ice creams eaten on a given day) find the ‘hidden’ sequence
O of weather statesaE(ﬁ4 or C) which caused Jason to eat the ice cream.
=V R

N
JRA TN /

e HMM for the ice cream task

emission probabilities

emission probabilities
B1 Bz

[P(1 | HOT)] [2] [P(1 | COLD)] [5]
P2 |HOT) | = | 4 P2|coLp)| = | .4
pa|HOT)| |4 P cop)| |1

D11 W: W] A hidden Markov model for relating numbers of ice creams eaten by Jason (the
observations) to the weather (H or C, the hidden variables).

The Hidden Markov Model

* Three fundamental problems:

Problem 1 (Likelihood):
Problem 2 (Decoding):

Problem 3 (Learning):

Given an HMM A = (A,B) and an observation se-
quence O, determine the likelihood P(O|A).

Given an observation sequence O and an HMM A =
(A, B), discover the best hidden state sequence Q.

Given an observation sequence O and the set of states
in the HMM, learn the HMM parameters A and B.

Likelihood Computation

e Task definition

Computing Likelihood: Given an HMM A = (A, B) and an observa-
tion sequence O, determine the likelihood P(O|A).

* Forward algorithm
* Dynamic programming algorithm
* uses a table to store intermediate values
* computes the observation probability by summing over the

probabilities of all possible hidden state paths that could generate

the observation sequence

e Use a single forward trellis

Likelihood Computation

* Each cell of the forward algorithm trellis o;(j) Forhidden state
* probability of being in state j after seeing the first t observations,
given the automaton A
* summing over the probabilities of every path that could lead us to

this cell.
a’t(.]) :P(01702---0t7qt :]|A’)

e Foragiven state ¢g; at time t, the value () is computed as

N Consideri
onsidering the
(07 (]) = Z (0 /| (i)a,-jbj (Ot) current state could
time tstatej j—1 time t-1 state i generate the Ot
0;_1(i) the previous forward path probability from the previous time step
a;j the transition probability from previous state g; to current state g

bi(o) the state observation likelihood of the observation symbol o; given
the current state j P(Si->Ox)

Likelihood Computation

Sum over
a,(2)=.32 a,(2)=.32".12 + .02".1 = .0404

q1 t C

>

t

3T W] The forward trellis for computing the total observation likelihood for the ice-cream events 3 7 3.
Hidden states are in circles, observations in squares. The figure shows the computation of o;(j) for two states at

two time steps. The computation in each cell follows Eq. A.12: o;(j) = SV, a1 (i)a; ibj(0s). The resulting
probability expressed in each cell is Eq. A.11: o4 (j) = P(01,02...0¢,q: = j|A).

Likelihood Computation

L . q
ax a,(j)= Z; ap4(i) a;blo)

3
' Q3
821 S
P b'(o)
j t
A 192 ; '\ 92/
(G) LG)
Ot Ot41

TP W] Visualizing the computation of a single element oy () in the trellis by summing
all the previous values o1, weighted by their transition probabilities a, and multiplying by
the observation probability b;(o; 1). For many applications of HMMs, many of the transition

probabilities are 0, so not all previous states will contribute to the forward probability of the
current state. Hidden states are in circles, observations in squares. Shaded nodes are included

in the probability computation for o (7).

Likelihood Computation

function FORWARD(observations of len T, state-graph of len N) returns forward-prob

create a probability matrix forward[N,T]NMRZS, TN | @) = mbjlo) 1<j<N

for each state s from 1 to N do ; initialization step
forward[s,1]<— Ty * bs(01) E—FRMinmE~ LR
for each time step ¢ from 2 to 7' do ; recursion step

for each state s from 1 toNdo Zm Ty A

forward|s,t] Z forward|[s',t — 1] * ag s * by (ot)
forward[N,TIE&Z & T

s/=1

N
forwardprob <+ Z forward|s,T] ; termination step Sum of the last column
s=1 N
return forwardprob P(0IA) =} o)

10T Wd The forward algorithm, where forward|s,t| represents oy (s).

Decoding: The Viterbi Algorithm

e Task definition
Decoding: Given as input an HMM A = (A, B) and a sequence of ob-
servations O = 01,03, ...,0T, find the most probable sequence of states
0=q19293---9r.
* Viterbi algorithm
* Dynamic programming algorithm
* v(J)
* represents the probability that the HMM is in state j after
seeing the first t observations and passing through the most
probable state sequence q1,...,gt-1, given the automaton A
* computed by recursively taking the most probable path that

could lead us to this cell
Vt(j) = max P(‘]l---Qt—l,OI,OZ---OzaCIt :j|)‘)

qly--qt—1
* For a given state gj at time t, the value v;(j) is computed as

v(j) = maxv1(i) ai; bj(or)

Forward vs Viterbi algorithm

Likelihood : Forward Decode : Viterbi

Vz(j) = max P q1.--41—1401,02 ...0s,4r — J|A’)
o (j) = P(01,02...01,q1 = j|A) B
represent the most probable path by
taking the maximum over all possible
previous state sequences

N
0:(j) =) 0u—1(i)aijbj(o : N :
() ; () lj J(t) Vt(]) — rln_alxvt_l(l) aijj bj(Ot)
Sum over Max
summing over the probabilities of most probable path that could lead
every path that could lead us to this to this cell

cell
Note that the Viterbi algorithm is identical to
the forward algorithm except that it takes the
max over the previous path probabilities
whereas the forward algorithm takes the sum.

Decoding: The Viterbi Algorithm

v,(2)=.32 v,(2)=|max(:32*.12, .02*.10) = .038
G LH PR) (1) BT O —
\\‘—’/ (O/H) X .6 .2 \\\\ 3
A p(’/cj 5 S //,’/
o}$ AN v,(1) = max(.32*.20:f6,2;>25) = .064
& v)=.02 9 2 %
.Y oWCy- 2
a4 Ceh 28 _~_P(CIC)* P(IC) o 2
\\ ," Q\ O\ -5 e .5
=E N
&
O, A
o
O
3 1 3
0, 0, 04

>

t

The Viterbi trellis for computing the best path through the hidden state space for the ice-cream
eating events 3 / 3. Hidden states are in circles, observations in squares. White (unfilled) circles indicate illegal
transitions. The figure shows the computation of v, (j) for two states at two time steps. The computation in each
cell follows Eq. A.14: v;(j) = maxi<j<ny—1Vi—1(i) aij bj(or). The resulting probability expressed in each cell

is Eq A.13: vt(j) :P(q()aqla"':qt~170]702""a01aqt = J‘A’)

Decoding: The Viterbi Algorithm

* The Viterbi Backtrace
* Forward algorithm needs to produce an observation likelihood,
* Viterbi algorithm must produce a probability and also the most
likely state sequence.
* keeping track of the path of hidden states that led to each state,
and then at the end backtracing the best path to the beginning

v2=32 __-~ T~ o V,(2)=max(.32".12,.02".10) =.038

(' it l) *P(11H) R
‘D(c/(6*.2
) 'D(’
-4 ,' /C)
Q ; Q\' \2\ \
* —] \ -
v vl(l) =.02 \\?\Y\ &

a L H)

~
~

v,(1) = max(.32*.20; 02%25) = .064

; T ___ P(CIC)* P(1IC :
G V\ic) £° e P e -
\ & S\ S 5. =
\ (b\ e R —
\ ¥ /
\ \%'b&v\ /
o
- 1 3
/
\"/

t

DTN W] The Viterbi backtrace. As we extend each path to a new state account for the next observation,
we keep a backpointer (shown with broken lines) to the best path that led us to this state.

Decoding: The Viterbi Algorithm

function VITERBI(observations of len T,state-graph of len N) returns best-path, path-prob

create a path probability matrix viterbi[N,T]
for each state s from 1 to N do ; initialization step
viterbi[s,1]<— g * bg(01) init

vi(j) = mibjlo1) 1<j<N
bti(j) = 0 1<j<N

backpointer([s,1]14—0 point to initial state 0 B (aubio): 1<j<N1<t<T
- : vi(j) = maxv,(i)aibj(o); 1<j<N,1<t<
for each time step # from 2 to 7' do ; recursion step ! e R j
for each state s from 1 to N do B = e el TEJRRLEST

. . N . L
viterbils,t] < max viterbils',t — 1] * ay s * bs(oy)
s=1

N
backpointer[s,t] +—argmax viterbils',t — 1] * ay s * bg(o;)
¥=1

N L . . . o . — N *
bestpathprob < max viterbi[s, T ; termination step Thobestscom: Pe = hax yr(f)
s=1

7

) N .) . . The start of backtrace: gr* = argmax vr(i)
bestpathpointer<— argmax viterbi[s,T] ; termination step i=1
=1

bestpath + the path sté;rting at state bestpathpointer, that follows backpointer[] to states back in time
return bestpath, bestpathprob

10T CEWY] Viterbi algorithm for finding optimal sequence of hidden states. Given an observation sequence
and an HMM A = (A, B), the algorithm returns the state path through the HMM that assigns maximum likelihood
to the observation sequence.

HMM Training

e Task definition

Learning: Given an observation sequence O and the set of possible
states in the HMM, learn the HMM parameters A and B.
* Input
* unlabeled sequence of observations O example . O ={1,3,2,...,}
e avocabulary of potential hidden states Q H and C
* Forward-backward or Baum-Welch algorithm
* aspecial case of the Expectation-Maximization or EM algorithm
* The algorithm will let us train both the transition probabilities A
and the emission probabilities B
 EM is an iterative algorithm, computing an initial estimate for the

probabilities, then using those estimates to computing a better
estimate, and so on, iteratively improving the probabilities that it
learns.

HMM Training

* Fully visible Markov model
* We know
* Input observations
» Aligned hidden state sequences (labeled)

3 3 2 i 1 2 1 2 3
hot hot cold cold cold cold cold hot hot

 Compute the HMM parameters just by maximum likelihood estimation
T m=1/3 m=2/3

p(hot|hot) =2/3 p(cold|hot) =1/3
p(cold|cold) =1/2 p(hot|cold) = 1/2 Maybe error in book
ignoring the final hidden states
P(llhot) =0/4=0 p(l|cold)=3/5=.6
P(2lhot) =1/4=.25 p(2|cold=2/5= 4
P(3|hot) =3/4 =75 p(3|cold) =0
But we don’t know which path of states was taken through the machine for a given input!!!

A matrix

B matrix

HMM Training

e Backward probability ﬁ

e probability of seeing the observations from time t+1 to the end,
given that we are in state i at time t (and given the automaton A)

ﬁt() (0t+1 0142 - -0T|Qt :ial)

(ag) Bl=Z Bur) a., b(0y,1)

2Ty
! \
\9g;
Nt
A
! \
' Qo i
S
No o

" TN
({ \
' Qy i
Nl |

ST

IJTTIVW.WE]l The computation of B;(i) by summing all the successive values Br+1(})
weighted by their transition probabilities a;; and their observation probabilities b ;(0;.+1). Start

and end states not shown.

1. Initialization:
Br(i) = 1, 1<i<N

Final state,have already
kown the whole seq

2. Recursion
N
i)= Eaij bj(or+1) Br+1(J),
j=1

igiaNigreT

3. Termination:
N

P(OIA) = m;bj(o1) Bi())

j=1
Given automaton, the p of O

HMM Training

* Probability &
* the probability of being in state i at time t and state j at time t +1,
given the observation sequence and the model

&t(l’,j) = P(qt = i, qdi+1 = _]|‘O,A) conditioning of O
+ Probability not-quite-&; (i, j)

not-quite-& (i, j) = P(q: = i,qi+1 = j|O|A)

HMM Training

« Probability not-quite-& (i, j)
HOt-qUitC-gt(i,j) - P(qt =1,qt4+1 = Ja0|l)

aijbj(9t+1) —

Bt+1(j)

4

Ot-1 % Ot+1 Ot+2

Computation of the joint probability of being in state i at time 7 and state j at
time ¢ + 1. The figure shows the various probabilities that need to be combined to produce
P(q; = i,qi+1 = J,O|A): the & and B probabilities, the transition probability a;; and the
observation probability b;(0;4.1). After Rabiner (1989) which is ©)1989 IEEE.

not-quite-& (i, j) = (i) aijbj(01+1) Br+1(J)

HMM Training

* The probability of the observation given the model is simply the
forward probability of the whole utterance (or alternatively, the
backward probability of the whole utterance):

P(OJA) Z B Goes ot inclading Ot refes Ot
&(i,j) = P(q: = i,qi+1 = j|O,A)
not-quite-& (i, j) = o4 (i) aijbj(0r+1)Br+1(J) ‘ 0 aubl gz;;;ﬁz;;(J)
P(O|2) zm(J)B:(Jj
o

HMM Training

expected number of transitions from state i to state j
dij =

expected number of transitions from state i

!

PN > irg-10Y)
LTS T &R

HMM Training

* Probability % (J)
* the probability of being in state j at time t

%(j)=Plg=jlO,A) mmh %(j)= P(q: = j,0|A) - 7)) = o () B (J)

P(O[4) P(O|2)

) B:()

<< .

0.1 20 o6

T Y. WR] The computation of %(j), the probability of being in state j at time 7. Note
that 7y is really a degenerate case of & and hence this figure is like a version of Fig. A.12 with
state i collapsed with state j. After Rabiner (1989) which is (©)1989 IEEE.

HMM Training

Emission score P(j->Vk)

5 i) expected number of times in state j and observing symbol v
I\YEk) — : : "
s expected number of times in state j

!

& - Zthl s.t.0r=vy %(J)
=TT)

HMM Training

function FORWARD-BACKWARD(observations of len T, output vocabulary V, hidden
state set Q) returns HMM=(A,B)

initialize A and B
iterate until convergence
E-step
#()) = DA vy ana
s at(i)al_]b (Ot-i-l)ﬁt-i-l(j) :
g = Yt i, and
&(i,J) e i, and j
M-step
T—-1
Z ét(iaj)
. =1
&j = 1§
& (i, k)
t=1 k=1
T

return A, B

Summary

* Hidden Markov models (HMMs) are a way of relating a sequence of
observations to a sequence of hidden classes or hidden states that

explain the observations.

* The process of discovering the sequence of hidden states, given the
sequence of observations, is known as decoding or inference. The
Viterbi algorithm is commonly used for decoding.

* The parameters of an HMM are the A transition probability matrix and
the B observation likelihood matrix. Both can be trained with the
Baum-Welch or forward-backward algorithm.

Thanks!

