

Language Model as an Annotator: Exploring DialoGPT for Dialogue Summarization

Xiachong Feng¹, Xiaocheng Feng^{1,2}, Libo Qin¹, Bing Qin^{1,2}, Ting Liu^{1,2}

1 Harbin Institute of Technology, 2 Peng Cheng Laboratory

Dialogue Summarization

• Dialogue summarization aims to generate a succinct summary while retaining essential information of the dialogue.

Dialogue

Blair: Remember we are seeing the

wedding planner after work

Chuck: Sure, where are we meeting her?

Blair: At Nonna Rita's

Chuck: I want to order seafood tagliatelle

Blair: Haha why not

Chuck: We remmber spaghetti pomodoro

disaster from our last meeting

Blair: Omg it was over her white blouse

Chuck: :D Blair: :P

Summary

Blair and Chuck are going to meet the wedding planner after work at Nonna Rita's. The tagliatelle served at Nonna Rita's are very good.

A Good Summary?

[Topic 1]

Peyrard (2019): a good summary is intuitively related to three aspects

Informativeness

Redundancy

Relevance

[Topic 2]

Dialogue			Dialogue		Dialogue		
	Blair:	Remember we are seeing the	Blair:	Remember we are seeing the	Blair:	Remember we are seeing the	
		wedding planner after work		wedding planner after work		wedding planner after work	
	Chuck:	Sure, where are we meeting her?	Chuck:	Sure, where are we meeting her?	Chuck:	Sure, where are we meeting her?	
	Blair:	At Nonna Rita's	Blair:	At Nonna Rita's	Blair:	At Nonna Rita's [Topic	: 1]
	Chuck:	I want to order seafood tagliatelle	Chuck:	I want to order seafood tagliatelle	Chuck:	I want to order seafood tagliatelle	1
	Blair:	Haha why not	Blair:	Haha why not	Blair:	Haha why not	
	Chuck:	We remmber spaghetti pomodoro	Chuck:	We remmber spaghetti pomodoro	omodoro Chuck: We remmber spaghetti pomodoro		
		disaster from our last meeting		disaster from our last meeting		disaster from our last meeting [Topic	2]
	Blair:	Omg it was over her white blouse	Blair:	Omg it was over her white blouse	Blair:	Omg it was over her white blouse	
	Chuck:	I'll make time for it	Chuck:	I'll make time for it	Chuck:	I'll make time for it	21
	Blair:	Great!	Blair:	Great!	Blair:	Great! [Topic	3]
		(a) Keywords Extraction		(b) Redundancy Detection		(c) Topic Segmentation	
		Summary					

Blair and Chuck are going to meet the wedding planner after work at Nonna Rita's. The tagliatelle served at Nonna Rita's are very good.

Related Works

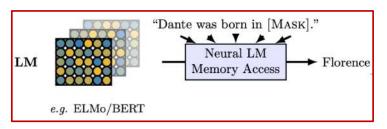
- For informativeness
 - Linguistically specific words
 - Domain terminologies
 - Topic words
- For redundancy
 - Similarity-based methods to annotate redundant utterances
- For relevance
 - Topic segmentation

Problems

- Relied on human annotations.
 - labor-consuming

- Obtained via open-domain toolkits
 - Dialogue agnostic
 - not suitable for dialogues

Pre-trained Language Models



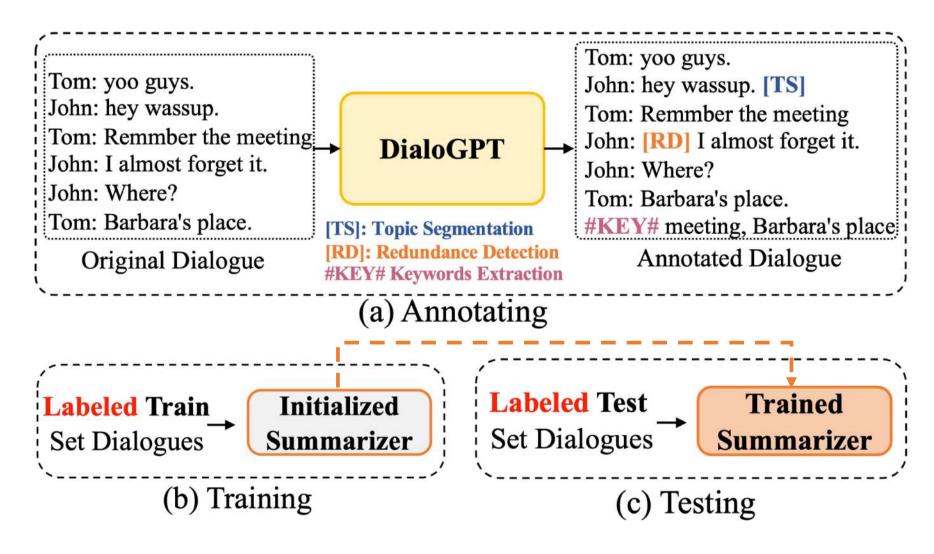
Knowledge Base

Prompt Tuning

Zero-shot learning

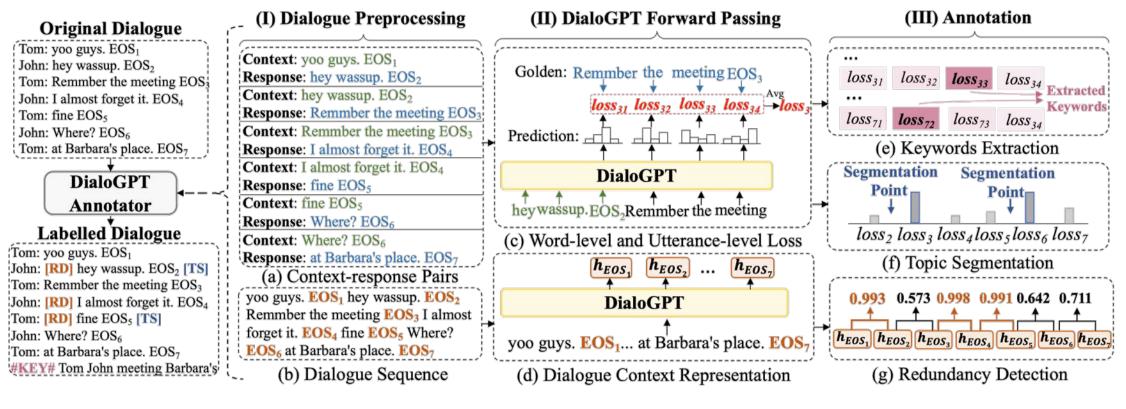
Pre-encoded Knowledge

DialoGPT Annotator



Overview

- Keywords Extraction: Extracts unpredictable words as keywords.
- Topic Segmentation: Inserts a topic segmentation point before one utterance if it is unpredictable.
- Redundancy Detection: Detects utterances that are useless for context representation as redundant.



Keywords Extraction: DialoGPT_{KE}

- Motivation: if one word in the golden response is difficult to be inferred from DialoGPT, we assume that it contains high information and can be viewed as a keyword.
- Extracts unpredictable words as keywords.

Original Dialogue

Tom: yoo guys. EOS₁

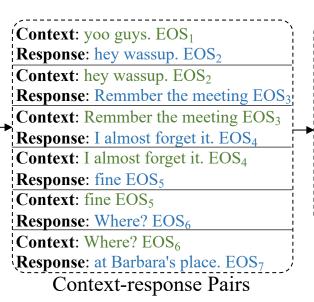
John: hey wassup. EOS₂

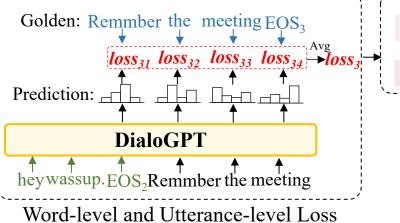
Tom: Remmber the meeting EOS₃

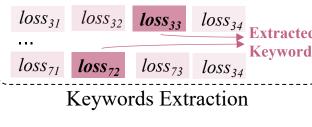
John: I almost forget it. EOS₄

Tom: fine EOS₅
John: Where? EOS₆

Tom: at Barbara's place. EOS₇







Topic Segmentation: DialoGPT_{TS}

- **Motivation**: if the response is difficult to be predicted given the context based on DialoGPT, we assume the response may belong to another topic and there is a topic segmentation between the context and response.
- Inserts a topic segmentation point before one utterance if it is unpredictable.

Original Dialogue

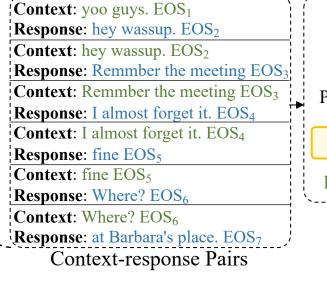
Tom: yoo guys. EOS₁
John: hey wassup. EOS₂

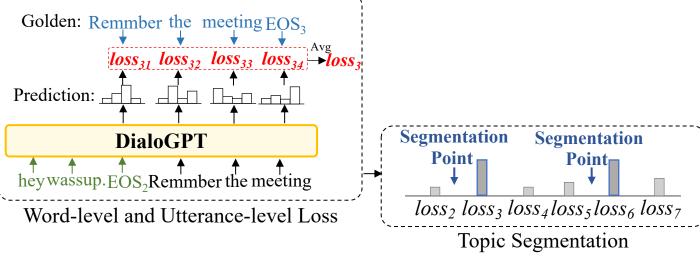
Tom: Remmber the meeting EOS

John: I almost forget it. EOS₄

Tom: fine EOS₅
John: Where? EOS₆

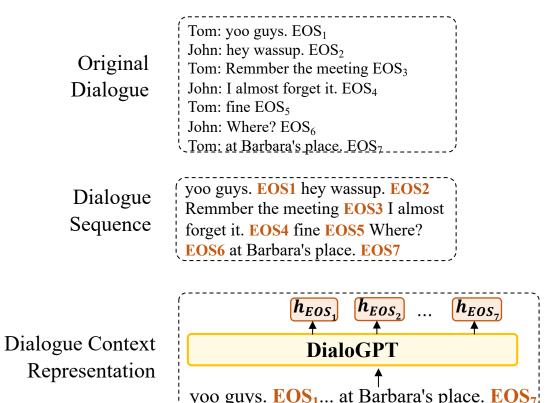
Tom: at Barbara's place. EOS₇

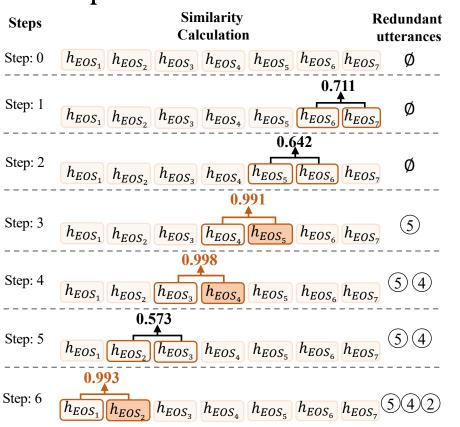




Redundancy Detection: DialoGPT

- Rear Com far Social Computing and Suferenation Retrieval 解语言 认知社会
- Motivation: If one utterance brings brings little information and has small effects on predicting the response, this utterance becomes a redundant utterance.
- Detects utterances that are useless for context representation as redundant.

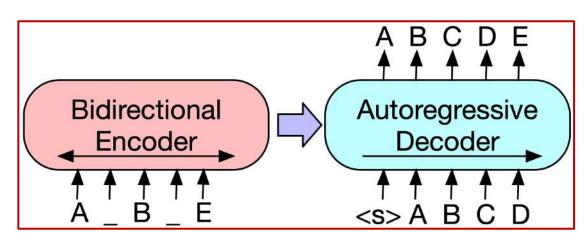




Annotation Tags

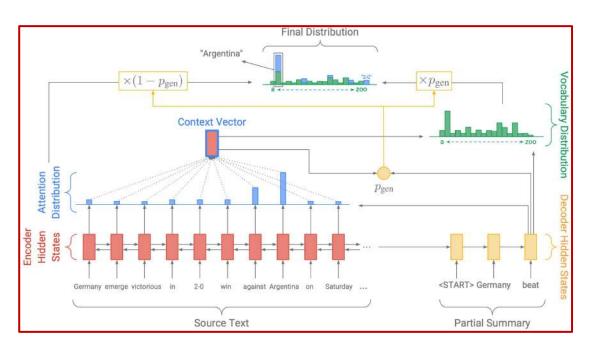


Summarizer



BART

Pre-trained



PGN

Non pre-trained

Dataset and Metrics

Datasets

- SAMSum
- AMI

		Train	Valid	Test
- III	#	14732	818	819
SAMSu	Avg.Turns	11.13	10.72	11.24
₹	Avg.Tokens	120.26	117.46	122.71
S	Avg.Sum	22.81	22.80	22.47
71	#	97	20	20
AMI	Avg.Turns	310.23	345.70	324.40
A	Avg.Tokens	4859.52	5056.25	5257.80
<u>ter</u>	Avg.Sum	323.74	321.25	328.20

Statistics for SAMSum and AMI datasets

Evaluation Metrics

- ROUGE
- BERTScore

Automatic Evaluation

Model	R-1	R-2	R-L				
Extractive							
LONGEST-3	32.46	10.27	29.92				
TextRank	29.27	8.02	28.78				
	Abstract	ive					
Transformer	36.62	11.18	33.06				
D-HGN	42.03	18.07	39.56				
TGDGA	43.11	19.15	40.49				
DialoGPT	39.77	16.58	38.42				
MV-BART	53.42	27.98	49.97 ^{††}				
	Ours						
BART	52.98	27.67	49.06				
$BART(\mathcal{D}_{KE})$	53.43 ^{ff}	28.03 ^{††}	49.93				
$\mathrm{BART}(\mathcal{D}_{\mathrm{RD}})$	53.39	28.01	49.49				
$BART(\mathcal{D}_{TS})$	53.34	27.85	49.64				
$\mathrm{BART}(\mathcal{D}_{\mathrm{ALL}})$	53.70 [†]	28.79 [†]	50.81 [†]				

Model	R-1	R-2	R-L					
Extractive								
TextRank	35.19	6.13	15.70					
SummaRunner	30.98	5.54	13.91					
	Abstracti	ve						
UNS	37.86	7.84	13.72					
TopicSeg	51.53 ^{††}	12.23	25.47^{\dagger}					
HMNet	52.36 [†]	18.63^{\dagger}	24.00					
	Ours							
PGN	48.34	16.02	23.49					
$PGN(\mathcal{D}_{KE})$	50.22	17.74	24.11					
$PGN(\mathcal{D}_{RD})$	50.62	16.86	24.27					
$PGN(\mathcal{D}_{Ts})$	48.59	16.07	24.05					
$PGN(\mathcal{D}_{ALL})$	50.91	17.75 ^{††}	24.59 ^{††}					

Test set results on the AMI dataset

SAMSur	n	AMI		
Model	BS	Model	BS	
BART	86.91	PGN	80.51	
MV-BART	88.46	HMNet	82.24	
$\mathrm{BART}(\mathcal{D}_{\mathrm{ALL}})$	90.04	$PGN(\mathcal{D}_{ALL})$	82.76	

BERTScore

Human Evaluation

model can perform

better in coverage

3. 	Model	Info.	Conc.	Cov.
	Golden	4.37	4.26	4.27
_	BART	3.66	3.65	3.66
'n	MV-BART	3.85	3.76	3.88
SAMSum	$\mathrm{BART}(\mathcal{D}_{\mathrm{KE}})$	3.88	3.77	3.79
SA	$BART(\mathcal{D}_{RD})$	3.74	3.98 [†]	3.89
	$BART(\mathcal{D}_{TS})$	3.95 ^{††}	3.76	4.01 ^{††}
	$BART(\mathcal{D}_{ALL})$	4.05^{\dagger}	3.78 ^{††}	4.08 [†]
	Golden	4.70	3.85	4.35
	PGN	2.92	3.08	2.70
\ =	HMNet	3.52^{\dagger}	2.40	3.40^{\dagger}
AMI	$PGN(\mathcal{D}_{KE})$	3.20	3.08	3.00
	$PGN(\mathcal{D}_{RD})$	3.15	3.25^{\dagger}	3.00
	$PGN(\mathcal{D}_{Ts})$	3.05	$3.10^{\dagger\dagger}$	3.17 ^{††}
	$PGN(\mathcal{D}_{ALL})$	3.33††	3.25^{\dagger}	3.10

model can get the best score in conciseness

Effect of DialoGPT_{KE}

- Entities play an important role in the summary generation.
- Combined with DialoGPT embeddings, KeyBERT can get better results.

Method	R-1	R-2	R-L			
Rule-Bas	sed Meth	ods				
Entities	53.36	27.71	49.69			
Nouns and Verbs	52.75	27.48	48.82			
Traditio	nal Meth	ods				
TextRank	53.29	27.66	49.33			
Topic words	53.28	27.76	49.59			
Pre-trained Languag	e Model	-Based N	1ethods			
KeyBERT						
w/ BERT emb	52.39	27.14	48.52			
w/ DialoGPT emb	53.14	27.25	49.42			
Ours						
DialoGPT _{KE}	53.43	28.03	49.93			

Intrinsic Evaluation For Keywords

- View reference summary words as golden keywords
- Both TextRank and Entities perform poorly in recall
- Our method can extract more diverse keywords.

Method	Precision	Recall	${f F_1}$
TextRank	47.74%	17.44%	23.22%
Entities	60.42%	17.80%	25.38%
$DialoGPT_{K\scriptscriptstyle E}$	33.20%	29.49%	30.31%

Effect of DialoGPT_{RD}

- Rule-based method: annotates utterances without noun, verb and adjective as redundant.
- Our method shows more advantages for long and verbose meeting transcripts in the AMI.

Model	R-1	R-2	R-L				
SAMSum							
Rule-based	53.00	27.71	49.68				
DialoGPT _{RD}	53.39	28.01	49.49				
AMI							
Rule-based	50.19	16.45	23.95				
DialoGPT _{RD}	50.62	16.86	24.27				

Effect of DialoGPT_{TS}

• Our method can get comparable results with the strong baseline C99(w/DialoGPT emb).

Model	R-1	R-2	R-L						
SAMSum									
C99									
w/ BERT emb	52.80	27.78	49.50						
w/ DialoGPT emb	53.33	28.04	49.39						
DialoGPT _{Ts}	53.34	27.85	49.64						
A	MI								
Golden	50.28	19.73	24.45						
C99									
w/ BERT emb	48.53	15.84	23.63						
w/ DialoGPT emb	49.22	16.79	23.88						
DialoGPT _{TS}	48.59	16.07	24.05						

Ablation Studies for Annotations

- For both datasets, training summarizers based on datasets with two of three annotations can surpass corresponding summarizers that are trained based on datasets with one type of annotation.
- Summarizers that are trained on D_{KE+TS} still get improvements on both datasets.

Model	R-1	R-2	R-L	Model	R-1	R-2	R-L
Ours					Ours		
BART	52.98	27.67	49.06	PGN	48.34	16.02	23.49
$\mathrm{BART}(\mathcal{D}_{\mathrm{KE}})$	53.43	28.03	49.93	$PGN(\mathcal{D}_{KE})$	50.22	17.74	24.11
$BART(\mathcal{D}_{RD})$	53.39	28.01	49.49	$PGN(\mathcal{D}_{R\scriptscriptstyle D})$	50.62	16.86	24.27
$BART(\mathcal{D}_{Ts})$	53.34	27.85	49.64	$PGN(\mathcal{D}_{Ts})$	48.59	16.07	24.05
$BART(\mathcal{D}_{KE+RD})$	53.56	28.65	50.55	$PGN(\mathcal{D}_{KE+RD})$	50.74	17.11	24.52
$BART(\mathcal{D}_{KE+TS})$	53.51	28.13	50.00	$PGN(\mathcal{D}_{KE+TS})$	50.69	16.83	24.33
$BART(\mathcal{D}_{RD+TS})$	53.64	28.33	50.13	$PGN(\mathcal{D}_{RD+TS})$	50.70	16.96	24.38
$\mathrm{BART}(\mathcal{D}_{\mathrm{ALL}})$	53.70	28.79	50.81	$PGN(\mathcal{D}_{ALL})$	50.91	17.75	24.59

Conclusion

- We investigate to use DialoGPT as unsupervised annotators for dialogue summarization, including keywords extraction, redundancy detection and topic segmentation.
- Experimental results show that our method consistently obtains improvements upon pre-traind summarizer (BART) and non pre-trained summarizer (PGN) on both datasets.
- Combining all three annotations, our summarizer can achieve new state-of-the-art performance on the SAMSum dataset.

Thanks!