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ICLR Neuroscience and Cognitive Science Track

Incremental Learning of Structured Memory via Closed-Loop Transcription

A probabilistic framework for task-aligned intra- and inter-area neural manifold estimation

A Theoretical Framework for Inference and Learning in Predictive Coding Networks

Real-time variational method for learning neural trajectory and its dynamics

Words are all you need? Language as an approximation for representational similarity

Disentangling with Biological Constraints: A Theory of Functional Cell Types

Representational Dissimilarity Metric Spaces for Stochastic Neural Networks

Simplicial Hopfield networks

Backpropagation at the Infinitesimal Inference Limit of Energy-Based Models: Unifying Predictive Coding, Equilibrium Propagation, and
Contrastive Hebbian Learning

Interneurons accelerate learning dynamics in recurrent neural networks for statistical adaptation

Training language models for deeper understanding improves brain alignment

GAMR: A Guided Attention Model for (visual) Reasoning

BrainBERT: Self-supervised representation learning for Intracranial Electrodes
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| Begin

Pretrained in an unsupervised manner on a large
Reusable Transformer corpus of unannotated neural recordings.

I T

BrainBERT: Self-supervised representation
learning for Intracranial Electrodes
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Super-resolution spectrograms
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| Motivation of BrainBERT
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| Motivation of BrainBERT

* How to balance both power and explainability?
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Advantages

* BrainBERT is pretrained once across a pool of subjects, and then provides off-the-shelf
capabilities for analyzing new subjects with new electrode locations even when data is
scarce.

* Neuroscientific experiments tend to have little data in comparison to other machine
learning settings, making additional sample efficiency critical.

e Other applications, such as brain-computer interfaces can also benefit from shorter
training regimes, as well as from BrainBERT’s significant performance improvements.

* |In addition, the embeddings of the neural data provide a new means by which to
investigate the brain.
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| Input: SEEG

* Stereo-electroencephalographic (SEEG, sz 4K /ix % )

Electrode Placements

Stereoelectroencephalogr
(SEEG)
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| Input: SEEG
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| Fourier Transform (4% 2 v+ % %)
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| Short-Time Fourier Transform (STFT)

Temporal resolution is fixed for all frequencies
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| Superlet Transform

Temporal resolution increases with frequency

(Moca et al., 2021)
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| Two methods: STFT and Superlet Transform

Short-time Fourier Transform (STFT)

Superlet
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I Mask 0 e, §

d Training BrainBERT: Self-supervised
pre-training with reconstruction loss

Reconstructed masked portions
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Frequency

| Static masking for STFT

Short-time Fourier Transform with mask

Time

Randomly chosen time and frequency intervals.

integer from the range [step

chosen integer from the range [step

2022/11/29

time
min

time
stepmax |

The width of each frequence-mask is a randomly

freq

freq
stePmax

min ’

Xiachong Feng

The width of each time-mask is a randomly chosen

]

|
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Power (Arbitrary units)

Algorithm 1 Time-masking procedure

Y < n X m spectrogram
140
while : < m do
p ~ Unif(0, 1)
if p < pmask then
L~ [Unif(step,;,, stepp,, + 1)
q ~ Unif(0,1)
if ¢ < pip then
pass
elseif pip < g < pp + Preplace then
j < Unif(0,m — 1)
Y[,i:i 4+« Y[,5:54+]]
else
Y[,i:t4+1«0
end if
i 4141
end if
end while
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| Adaptive Masking for Superlet Transform
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| Masking Strategy for Two Methods

Short-time Fourier Transform with mask

Superlet with adaptive mask
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| Masking Strategy for Two Methods

Y = ]Rnxm

* n frequency channels
* m time frames

STFT

Superlet

2022/11/29 Xiachong Feng



| BrainBERT

(s

Pre-training???

‘\/

@ Fine-tuning

(

g

BrainBERT

\

J

N

&

2 Mask Strategy???‘ @ Input Format???

/

2022/11/29

Xiachong Feng

22



| Spectrogram Prediction Head
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| Pretraining Loss

* L1 reconstruction loss

M is the set of masked spectrogram positions

Since the spectrogram is z-scored along the time-axis,
approximately 68% of the z-scored spectrogram is O or < 1.

e Content aware loss ) 4
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Data

* 10 subjects (5 male, 5 female; aged 4-19, u 11.9, o 4.6) with pharmacologically intractable
epilepsy.

* 4.37 hours of data were collected from each subject;

* Subjects watched a feature length movie in a quiet room while their neural data was recorded at
a rate of 2kHz.

* Across all subjects, data was recorded from a total of 1,688 electrodes, with a mean of 167
electrodes per subject

* During pretraining, data from all subjects and electrodes is segmented into 5s intervals, and all
segments are combined into a single training pool.

* For pretraining purposes, neural recordings from 19 of the sessions was selected, and the
remaining 7 sessions were held out to evaluate performance on decoding tasks.

* All ten subjects are represented in the pretraining data.
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| Feature Extraction

< Mean of W along the time (first) axis
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| Experiments: classification tasks

Determining if the subject is hearing
speech or non-speech

The pitch of the overheard words

Determining the volume of the audio the
subject is listening to
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| Main Results

Sentence  Speech/Non- Pitch Volume Task Avg.

onset speech
Linear (.25s, time domain) ad==.04 52403 AsSE 09 54+ .09 B2 OF
Linear (5s, time domain) 63+.04 .58+.06 .58+ .07 .56+ .19 .59+ .11
Linear (.25s, STFT) 60+.04 .53+.04 .51+ .06 52+ .06 .54+ .06
Linear (.25s, superlet) H9E.03 H3E03 S524% 06 .53+ .08 .54+ .06
Deep NN (3s, 5 FF layers) 72+.10 67x£.08 .H57X+.06 .54+ .11 .63+ .12
BrainBERT (STFT) 82+ .07 93+.03 .75+.03 .83+.09 .83 +.09
random initialization B8L10 H9+.11 50408 61411 .60+ .12
without content aware loss .81 +.07 .90+.12 .68+ .06 .84 4+ .04 .81 + .11
BrainBERT (superlet) T8+ .08 86+.06 .62+.05 .70+.10 .74+ .12
random initialization 66+.09 .54+.04 .52+ .07 .60+ .05 .58 £+ .09
without content aware loss .74+.12 .79+.14 594+ .05 .70+.13 .71+ .14
without adaptive mask 78+.08 86£.05 .70£.04 .76 .06 .77 £ .08

{YBrainBERT
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| Main Results

Sentence  Speech/Non- Pitch Volume Task Avg.
onset speech
Linear (.25s, time domain) 54+.04 52+.03 .48+.09 .54+.09 .52+ .07
Linear (5s. time domain) 63E.04 58F.06 .58 F .07 .56F .19 5H9FE 1T
Linear (.25s, STFT) 60+.04 53+.04 .51+ .06 .52+ .06 .54 .06
(Linear (.25s, superlet) H9+.03 53+£.03 .52+.06 .53+ .08 .54 + .06
Deep NN (3s, 5 FF layers) A2x.10 67E£.08 .H57x+.06 .54+ .11 .63+ .12
BrainBERT (STFT) 824+ .07 93+.03 .75+.03 .834+.09 .83 4+ .09
random initialization B68+.10 .59+.11 .504+.05 .614+.11 .60+ .12
without content aware loss .81 4+.07 .90+.12 .68+ .06 .84+ .04 .81 + .11
BrainBERT (superlet) T8+ .08 86+.06 .62+.05 .70+.10 .74+ .12
random initialization B6+.09 .544+.04 524 .07 .604 .05 .58+ .09
without content aware loss .744+.12 .79+.14 .59+ .05 .70x+.13 .71+ .14
without adaptive mask 78+.08 86£.05 .70£.04 .76 .06 .77 £ .08
Y BrainBERT
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| Main Results

Sentence  Speech/Non- Pitch Volume Task Avg.

onset speech
Linear (.25s, time domain) D4+.04 5H52+.03 .48+ .09 .54+ .09 .52+ .07
Linear (5s, time domain) 63+.04 5H8+.06 .B8+.07 .56+.19 .59+ .11
Linear (.25s, STFT) 60+.04 .53+.04 .51+.06 .52+ .06 .54+ .06
Linear (.25s, superlet) H9E.03 H3E03 S524% 06 .53+ .08 .54+ .06

| Deep NN (35s, 5 FF layers) A2 00 6708 S0+ 06 54+ 11 6312 )
BrainBERT (STFT) 82+ .07 93+.03 .75+.03 .83+.09 .83+ .09
random initialization B81+10 H9+ A1 S0+L:05 .61+ .11 .60-F:.12
without content aware loss .81 +.07 .90+.12 .68+ .06 .84 +.04 .81 + .11
BrainBERT (superlet) T8+ .08 86+.06 .62+.05 .70+.10 .74+ .12
random initialization 66+.09 54+.04 .52+.07 .60+.05 .58 + .09
without content aware loss .74+.12 .79+.14 .59+ .05 .70+ .13 .71+ .14
without adaptive mask 78+.08 86£.05 .70£.04 .76 .06 .77 £ .08
Y BrainBERT
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| Main Results

Sentence  Speech/Non- Pitch Volume Task Avg.
onset speech
Linear (.25s, time domain) D4+.04 5H52+.03 .48+ .09 .54+ .09 .52+ .07
Linear (5s, time domain) 63+.04 5H8+.06 .B8+.07 .56+.19 .59+ .11
Linear (.25s, STFT) 60L.04 53404 .51+ 06 524 .06 .54+ .06
Linear (.25s, superlet) H9E.03 H3E03 S524% 06 .53+ .08 .54+ .06
Deep NN (3s, 5 FF layers) 72+.10 67x£.08 .H57X+.06 .54+ .11 .63+ .12
. BrainBERT (STFT) 82+ .07 .93+.03 .75+ .03 .83+ .09 .83 4+ .09]
random initialization B81+10 H9+ A1 S0+L:05 .61+ .11 .60-F:.12
without content aware loss .81 +.07 .90+.12 .68+ .06 .84 +.04 .81 + .11
BrainBERT (superlet) T8+ .08 86+.06 .62+.05 .70+.10 .74+ .12
random initialization 66+.09 54+.04 .52+.07 .60+.05 .58 + .09
without content aware loss .74+.12 .79+.14 .59+ .05 .70+ .13 .71+ .14
without adaptive mask 78+.08 86£.05 .70£.04 .76 .06 .77 £ .08
Y BrainBERT
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| Main Results

Sentence  Speech/Non- Pitch Volume Task Avg.

onset speech
Linear (.25s, time domain) D4+ .04 524.03  484+.09 .544+.09 .52+ .07 )
Linear (Ss, time domain) 63+.04 .58+.06 .58+.07 .56+.19 .59+ .11 Sentence ~ Speech/Non- Pitch ~ Volume Task Avg.
Linear (.25s, STFT) 60+.04 .53+.04 .51+.06 524 .06 544 .06 onset speech
Deep NN Gs. aEF layers) 72610 674.08 .57+ 06 o4+ .11 65+ .12 random initialization 62+.04 .57+.04 .52+ .06 .59+.07 .57+ .06
BrainBERT (STFT) 82+ .07 93+.03 .75+ .03 .83+ .09 .83 +.09 i ¢ s i 07 .60 ()

random initialization

A N0 ONnient awa
: : : : : Vo AL : BrainBERT (superlet)
without content aware loss .81 +.07 .90+.12 .68+ .06 .84+ .04 .81+ .11 D

random initialization

BrainBERT (superlet) 78+.08  .86+£.06 .62+.05 .70+.10 .74+ .12 without content aware loss .68 +.06 .67+.07 .53+ .07 .60 £+ .07 .62+ .09
rapdom initialization 66+.09 54+.04 .524+.07 .60+ .05 B8+ .09 without adaptive mask 67+.06 66+.06 .54-+.06 .60+.07 .62+ .08
without content aware loss .74+.12 .79+.14 .59+ .05 .70+.13 .71+ .14
without adaptive mask 78+.08 86+.05 .70+.04 .76 +£.06 .77+ .08

Y BrainBERT * BrainBERT
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Broca's area Brodmann area 22

Function:
« Speech production

| Map on Brain

Linear Decoding BrainBERT

Figure 3: Using a linear decoder for classifying sentence onsets either (left) directly with the neural
recordings or (right) with BrainBERT (superlet input) embeddings. Chance has AUC of 0.5. Only
the 947 held-out electrodes are shown. Using BrainBERT highlights far more relevant electrodes,
provides much better decoding accuracy, and more convincingly identifies language-related regions
in the superior temporal and frontal regions.
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| Generalizing to New Subjects
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Figure 4: BrainBERT can be used off-the-shelf for new experiments with new subjects that have new
electrode locations. The performance of BrainBERT does not depend on the subject data being seen
during pretraining. We show AUC averaged across the four decoding tasks, in each case finetuning
BrainBERT’s weights and training a linear decoder. 10 held-out electrodes were chosen from the
held out subject’s data. As before, these electrodes have the highest linear decoding accuracy on the
original data without BrainBERT. The first two columns in each group show BrainBERT decoding
results when a given subject is included in the pretraining set, and when that subject is held out. The
performance difference between the two is negligible, and both significantly outperform the linear
decoding baseline, showing that BrainBERT is robust and can be used off the shelf.
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| Improved Data Efficiency
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Figure 5: BrainBERT not only improves decoding accuracy, but it does so with far less data than
other approaches. Performance on sentence onset classification is shown for an electrode in the
superior temporal gyrus (red). Error bars show 95% confidence interval over 3 random seeds. Linear
decoders saturate quickly, deep neural networks (5 FF layers, details in text) perform much better but
they lose explainability. BrainBERT without fine tuning matches the performance of deep networks,
without needing to learn new non-linearities. With fine-tuning BrainBERT significant outperforms,
and it does so with 1/5th as many examples (deep NN peak at 1000 examples is exceeded with only
150 examples). This is a critical enabling step for other analyses where subjects may participate in
only a few dozen trials as well as for BCL
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| Intrinsic Dimension

BrainBERT

Intrinsic Dim.
-100

# Electrodes
s § ¥ §

gl

n 40 “w .G!I
Intrinsic dimension
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# Electrodes
E & ¥

¢ 50 B " L w we 130 3o
Intrinsic dimension

Figure 6: Given neural recordings without any annotations, we compute the intrinsic dimenson-
ality (ID) of the BrainBERT embeddings at each electrode. (a) These embeddings lie in a lower
dimensional space than those produced by a randomly initialized model. (b) The electrodes with
the highest ID (top 10-th percentile; circled in red) can be found mainly in the frontal and temporal
lobes, and demonstrate that electrodes that participate in similar computations on similar data will
have similar ID, providing a new data-driven metric by which to identify functional regions and the

relationship between them.
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