

Incorporating Commonsense Knowledge into Abstractive Dialogue Summarization via Heterogeneous Graph Networks

Xiachong Feng¹, Xiaocheng Feng^{1,2}, Bing Qin^{1,2}

¹ Harbin Institute of Technology, ² Peng Cheng Laboratory

Task Introduction

Dialogue Summarization

• **Dialogue summarization** aims to generate a succinct summary while retaining essential information of the dialogue.

Dialogue

Reference Summary

Bob's car has broken down. In 10 minutes Tom will give him a lift to work.

Dialogue Summarization

Challenges and Motivation

Challenges

- Key Contents
- Coherence
- Abstractive
- Factual

Dialogue Modeling

- Multi-party
 - Structure
 - Topic Drift
 - Coreference

Dialogue Summarization

- Data Resource
- Dialogue Modeling
- Domain Specific

Commonsense Knowledge

• **Commonsense** is sound, practical judgment concerning everyday matters, or a basic ability to perceive, understand, and judge in a manner that is shared by (i.e. *common to*) nearly all people

Commonsense For NLP

Response Generation

Question Answering

Zhou H, Young T, Huang M, et al. Commonsense knowledge aware conversation generation with graph attention Lv S, Guo D, Xu J, et al. Graph-based reasoning over heterogeneous external knowledge for commonsense question answering

Commonsense for Dialogue Summarization

- By introducing commonsense knowledge according to the **pick up** and **car broke down**, we can know that **Bob expects Tom to give him a lift**.
- Commonsense knowledge can serve as a bridge **between non-adjacent utterances** that can help the model better understanding the dialogue.

Dialogue

Reference Summary

Bob's car has broken down. In 10 minutes Tom will give him a lift to work.

Two Research Problems

Heterogeneous Dialogue Graph Construction

Background: ConceptNet

- A freely-available large-scale commonsense knowledge base
- Includes words and common phrases.
- ConceptNet is a knowledge graph that connects words and phrases of natural language (terms) with labeled, weighted edges (assertions).

An open, multilingual knowledge graph			Documentation FAQ Chat E
Sea	ch for a word or phrase	English v Search	
What is ConceptNet?		Examples	
.onceptNet is a freely-available semantic network, designed to help o hat people use.	omputers understand the meanings of words	To explore what's in ConceptNet, try browsing	what it knows about any of these terms:
ConceptNet originated from the crowdsourcing project Open Mind Co the MIT Media Lab. It has since grown to include knowledge from othe resources, and games with a purpose.	mmon Sense, which was launched in 1999 at r crowdsourced resources, expert-created	en word The mot	n graph knowledge learn
ConceptNet		•• palabra palavra 単語	natural language semantic network
knowledge graph	has common sense knowledge	Word vectors and recent publ	lications
is used for natural language understanding	part of artificial intelligence	ConceptNet is used to create word embedding: word2vec, GloVe, or fastText, but better.	s representations of word meanings as vectors, similar to
part of word embeddings		These word embeddings are free, multilingual, harmful stereotypes. Their performance at wor the art at SemEval 2017.	aligned across languages, and designed to avoid representing d similarity, within and across languages, was shown to be sta

Heterogeneous Dialogue Graph Construction

(d) Speaker-Utterance Bipartite Graph

(e) Heterogeneous Dialogue Graph

Dialogue Heterogeneous Graph Network

Overall

- **Graph construction** receives a dialogue and ConceptNet and outputs a heterogeneous dialogue graph .
- **Node encoder** receives a sequence of words for a node and produces initial node and word representations.
- Graph encoder conducts graph operations for initial node representations.
- **Pointer decoder** either generate summary words from the vocabulary or copy from the input words.

Node Encoder

• The role of **node encoder** is to give each node $v_i \in \mathcal{V}$ an initial representation.

Graph Encoder

• **Graph encoder** is used to digest the structural information and get updated node representations. We employ *Heterogeneous Graph Transformer* (Hu et al., 2020) as our graph encoder.

Graph Layer

Pointer Decoder

• We employ a LSTM with attention and copy mechanism to generate summaries.

• We minimize the negative log-likelihood of the target words sequence.

$$L = -\sum_{t=1}^{|Y^*|} \log p\left(y_t^* | y_1^* \dots y_{t-1}^*, G\right)$$

Datasets

- **SAMSum** is a human generated dialogue summary dataset, which contains dialogues in various scenes of the real-life.
- Argumentative Dialogue Summary Corpus (ADSC) is mainly around debate topics.

Dataset	Split	#	Coverage	Average Know
	Train	14732	94.43%	19.60
SAMSum	Valid	818	95.72%	18.23
	Test	819	93.89%	19.77
ADSC	Full	45	100%	6.50

Automatic Evaluation

	Туре	Model	Know.	Heter.	Utter.	RL	R-1	R-2	R-L	
	Extractive	LONGEST-3 TextRank SummaRunner	X X X	× × ×	X X X	X X X	32.46 29.27 33.76	10.27 8.02 10.28	29.92 28.78 28.69	
	Abstractive	Transformer PGN HRED	× × ×	X X X	X X X	× × ×	36.62 40.08 40.39	11.18 1 <u>5.28</u> 16.13	33.06 36.63 37.65	
effectiveness	Pipeline	Abs RL AbsRL Enhance	X X	X X		\ \ \	40.96 41.95	17.18 18.06	39.05 39.23	effectiveness
or graph modeling	Ours	D-GCN D-GAT D-RGCN		× × ×	× × ×	X X X	41.33 41.08 41.36	16.98 16.89 17.07	38.70 38.61 38.93	heterogeneity modeling
		D-HGN	1	1	×	X	42.03	18.07	39.56	

Table 2: Test set results on the SAMSum Dataset, where "R-1" is short for "ROUGE-1", "R-2" for "ROUGE-2", "R-L" for "ROUGE-L". "Know.", "Heter.", "Utter." and "RL" indicate whether knowledge, heterogeneity modeling, utterance-level extraction labels and reinforcement learning are used or not.

Human Evaluation

- Compared with D-HGN, D-HGN(w/o knowledge) gets a lower score in abstractiveness, which indicates knowledge incorporation can help our model express deeper meanings.
- D-HGN(w/o speaker) performs worse than D-HGN in correctness, which shows effectiveness of heterogeneity modeling by viewing speakers as heterogeneous data.
- AbsRL Enhance performs worst in correctness, which may due to the utterances extraction will break the coherence of dialogue contexts.

Model	Abstractiveness	Informativeness	Correctness
PGN	2.70	2.68	2.49
AbsRL Enhance	2.94	3.23	2.43
D-HGN	3.26	3.25	2.92
w/o knowledge	3.09	3.16	2.80
w/o speaker	3.23	3.21	2.60

Table 3: Human evaluation results.

Ablation Study

Model	ROUGE-1	ROUGE-2	ROUGE-L
D-HGN	42.03	18.07	39.56
w/o message fusion	41.29	17.09	38.74
w/o node embedding	41.99	17.85	38.89

 Table 4: Ablation Study for Two Modules

without taking position information(w/o node embedding) or message fusion module(w/o message fusion) into account, our model will lose some performance.

(w/o knowledge), the model
suffers the performance drop

Model	ROUGE-1	ROUGE-2	ROUGE-L			
D-HGN	42.03	18.07	39.56			
w/o knowledge	41.52	17.38	38.76			
w/o speaker	41.06	17.17	38.92			
Table 5: Ablation Study for Different Types of Nodes						

Zero-shot Setting

Model	ROUGE-1	ROUGE-2	ROUGE-L
PGN	28.69	4.77	22.39
AbsRL Enhance	30.00	4.87	22.27
D-GAT	32.90	5.46	22.47
D-HGN	33.55	5.68	22.75

Table 6: ROUGE F_1 results on the Argumentative Dialogue Summary Corpus.

The homogeneous model D-GAT that uses knowledge can get better results than other baselines.

The D-HGN gets the best score.

Knowledge can help our models better understand the dialogue in the new domain.

Visualization

- We apply **t-SNE** to these vectors.
- **D-HGN** can generate more discrete and easily distinguishable representations.
- **D-GAT** also tends to separate representations of different types of nodes

Figure 5: Visualization of node representations generated by the last graph layer of D-HGN and D-GAT.

Case Study

Figure 6: Example summaries generated by different models for one dialogue.

Conclusion

- We are the first to improve abstractive dialogue summarization by incorporating commonsense knowledge.
- We introduce knowledge from the ConceptNet and present a Dialogue Heterogeneous Graph Network.
- Experiments on the SAMSum dataset show the effectiveness of our model. Zero-shot setting experiments show that our model can better generalized to the new domain.

Thanks!

Code

Paper