

Dialogue Discourse-Aware Graph Model and Data Augmentation for Meeting Summarization

Xiachong Feng, Xiaocheng Feng, Bing Qin, Xinwei Geng

Research Center for Social Computing and Information Retrieval Harbin Institute of Technology

Meeting Summarization

- Distill the most important information from a meeting (content selection) •
 - General abstract, decisions, actions, problems, task •
- Convert them into a short textual passage (surface realization) •

Parts of the Meeting

- A: What if we have a battery charger?
- \mathcal{B} : You can have neat design for it. \mathcal{C} : It would increase the cost.
- C: We have to change the end cost.

Summary

 \mathcal{A} asked whether to include a battery charger. \mathcal{B} answered his question. However, C disagrees with Asince it would increase the final cost.

Background

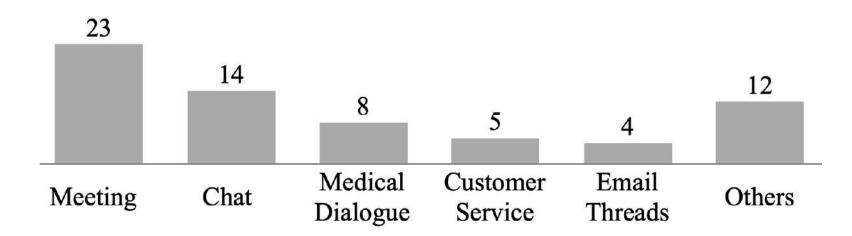
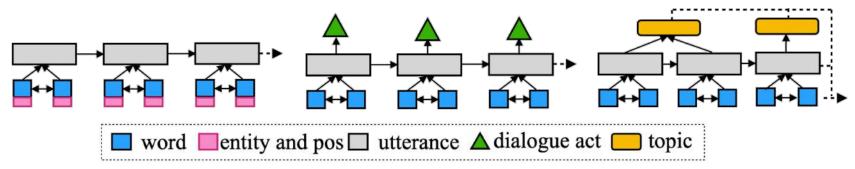


Figure 1: The number of dialogue summarization papers published over the past 5 years for each domain.

Problems

• Sequential text modeling is inadequate.

• hinder the exploration of inherently rich interactive relations between utterances.

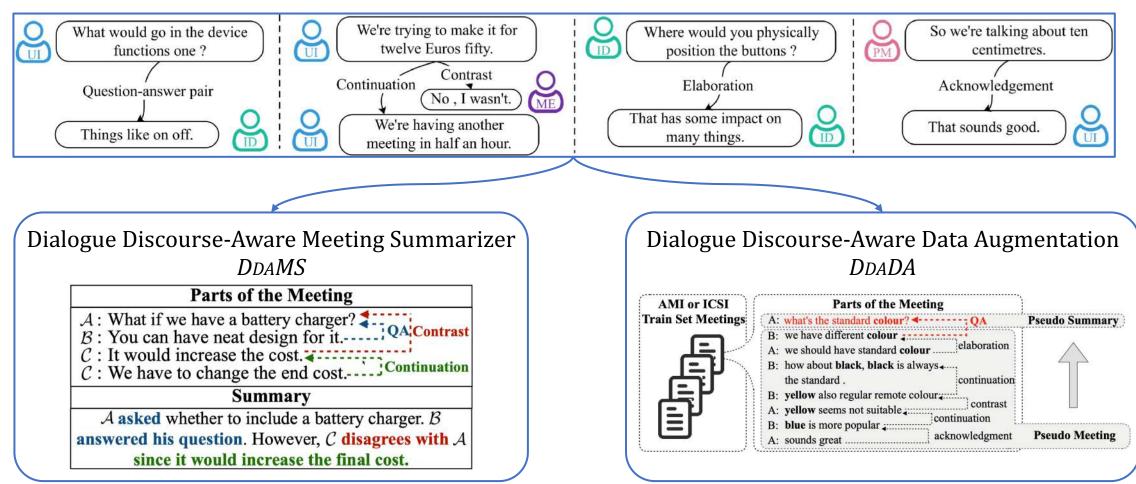


• Lack of sufficient training data.

• hinders the ability of data-hungry neural models.

Dataset	Domain	Train	Valid	Test
CNNDM	News	287227	13368	11490
AMI	Meeting	97	20	20
ICSI	Meeting	53	25	6

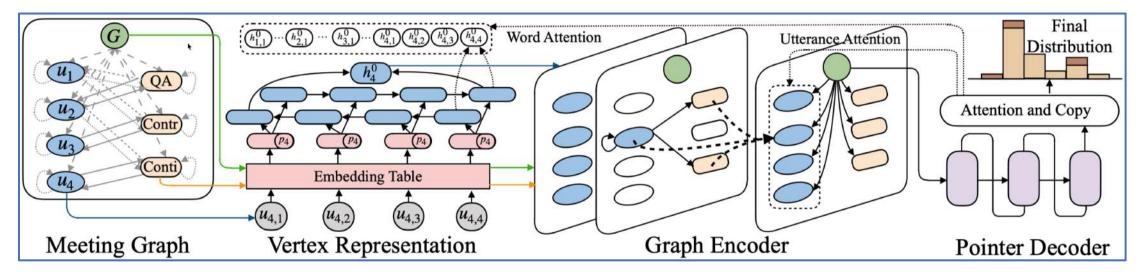
Dialogue Discourse



Dialogue Discourse-Aware Meeting Summarizer

Gives each type of vertex an initial representation

Generate the summary



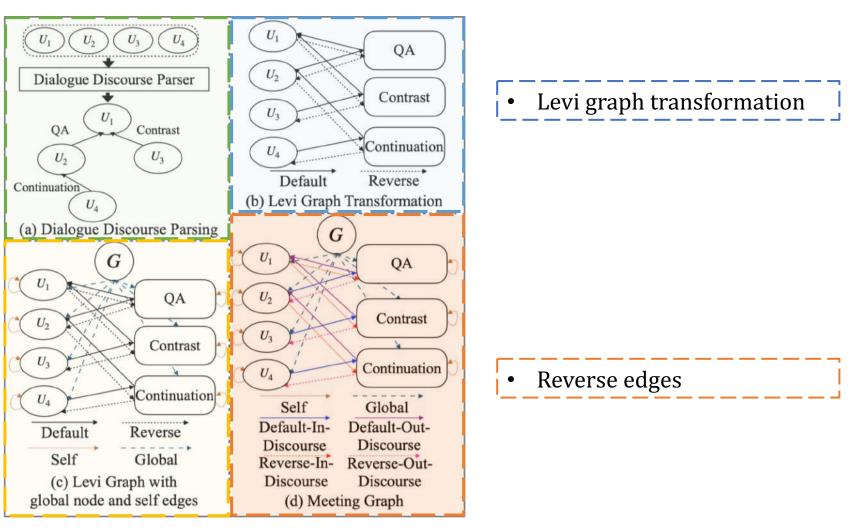
Meeting graph construction

Performs convolutional computation over the meeting graph

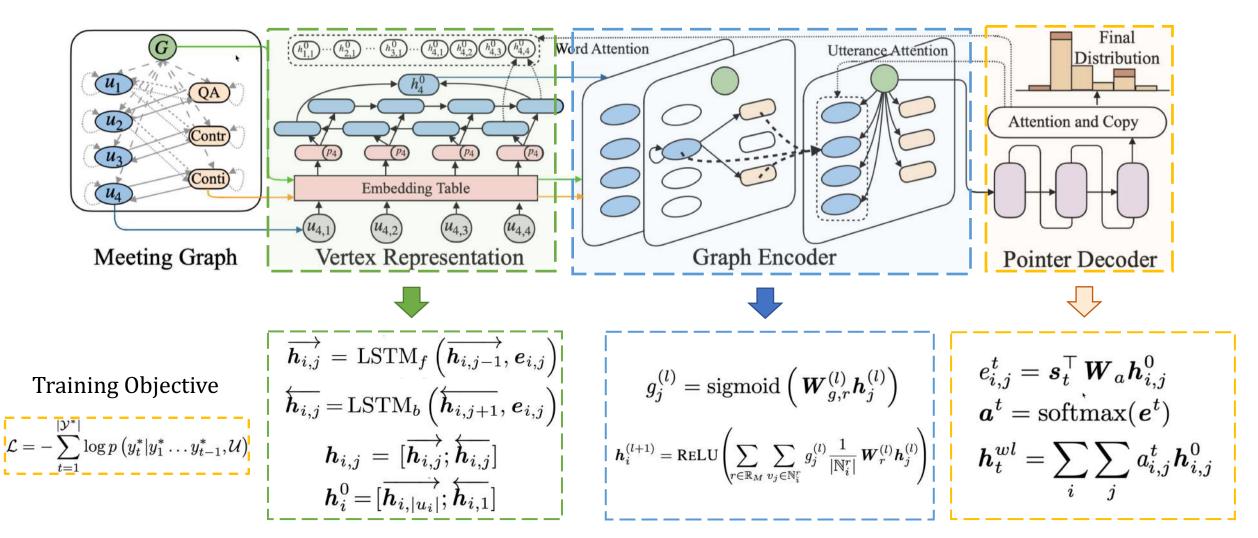
Meeting Graph Construction

- SOTA dialogue discourse parser
- 16 discourse relations

Global edges and Self edges

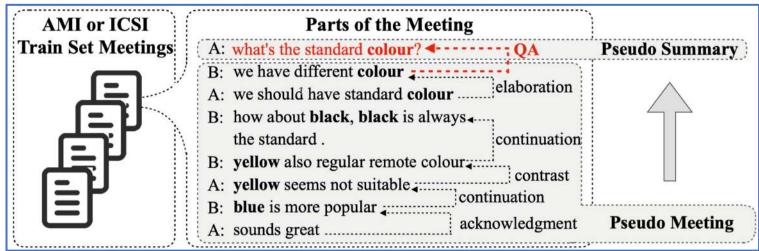


Graph2Seq Framework



Dialogue Discourse-Aware Data Augmentation

- Motivation
 - a question often sparks a discussion and contains salient terms or concepts expressed in the discussion.



11110	AMI	ICSI		AMI Pseudo Corpus	ICSI Pseudo Corpus
# Avg.Turns Avg.Tokens Avg.Sum	137 289 4,757 322	59 464 10,189 534	# of Original Da # of Pseudo Data Avg.Tokens	ta 97	53 1877 107.44

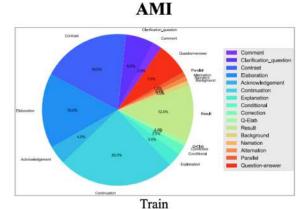
Experiments

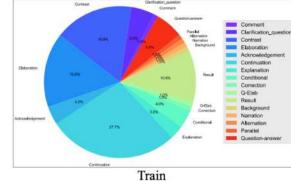
- Datasets:
 - AMI and ICSI

	AMI	ICSI		AMI Pseudo Corpus	ICSI Pseudo Corpus
#	137	59	# of Original Data# of Pseudo DataAvg.TokensAvg.Sum	97	53
Avg.Turns	289	464		1539	1877
Avg.Tokens	4,757	10,189		124.44	107.44
Avg.Sum	322	534		13.18	11.97

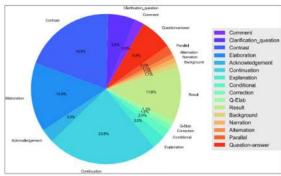
- Dialogue Discourse Parser
 - Deep Sequential
- Evaluation
 - ROUGE

Relation Distribution Statistics

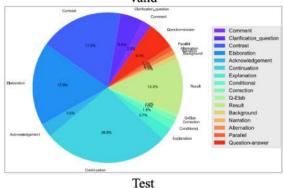


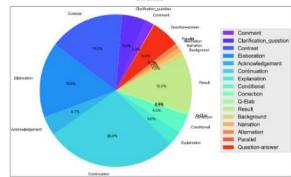


ICSI

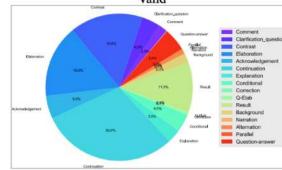


Valid





Valid



Test

Automatic Evaluation

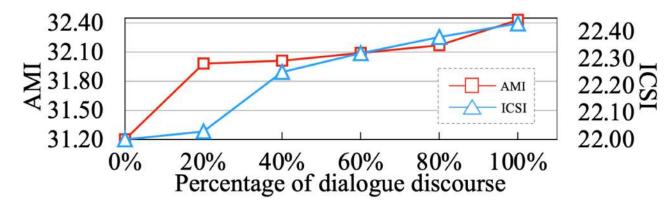
			Datasets					
				AMI			ICSI	
		Model	R-1	R-2	R-L	R-1	R-2	R-L
		TextRank [Mihalcea and Tarau, 2004]	35.19	6.13	15.70	30.72	4.69	12.97
	tractive	SummaRunner [Nallapati et al., 2017]	30.98	5.54	13.91	27.60	3.70	12.52
		UNS [Shang et al., 2018]	37.86	7.84	13.72	31.73	5.14	14.50
		Pointer-Generator [See et al., 2017]	42.60	14.01	22.62	35.89	6.92	15.67
Ab	stus stirrs	HRED [Serban et al., 2016]	49.75	18.36	23.90	39.15	7.86	16.25
ADS	stractive	Sentence-Gated [Goo and Chen, 2018]	49.29	19.31	24.82	39.37	9.57	17.17
		TopicSeg [Li et al., 2019]	51.53	12.23	25.47	3 <u>145</u> 1	_	-
Li	(i	HMNet [Zhu et al., 2020]	52.36	18.63	24.00	45.97	_10.14	18.54
		DDAMS	51.42	20.99	24.89	39.66	10.09	17.53
(Ours	DDAMS + DDADA	53.15	22.32	25.67	40.41	11.02	19.18
		DDAMS + DDADA (w/o fine-tune)	28.35	4.67	14.92	25.94	4.18	13.92

Human Evaluation

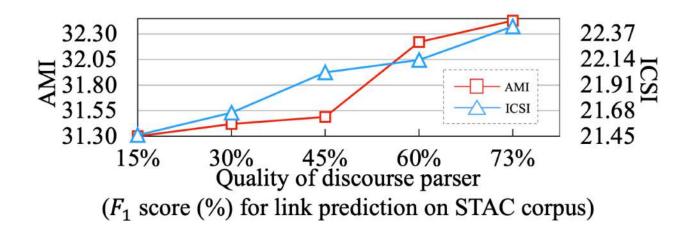
- DDAMS+DDADA achieves higher scores in both relevance and informativeness.
- Ground truth obtains the highest scores compare with generated summaries indicating the challenge of this task.

	Model	Relevance	Informativeness
	Ground-truth	4.60	4.56
П	Sentence-Gated	3.16	3.60
AMI	HMNet	3.60	3.72
A	DDAMS	3.80	3.76
	DDAMS +DDADA	3.84	3.88
	Ground-truth	4.76	4.48
Ц	Sentence-Gated	3.32	3.48
ICSI	HMNet	3.80	3.52
	DDAMS	3.76	3.28
	DDAMS +DDADA	3.84	3.60

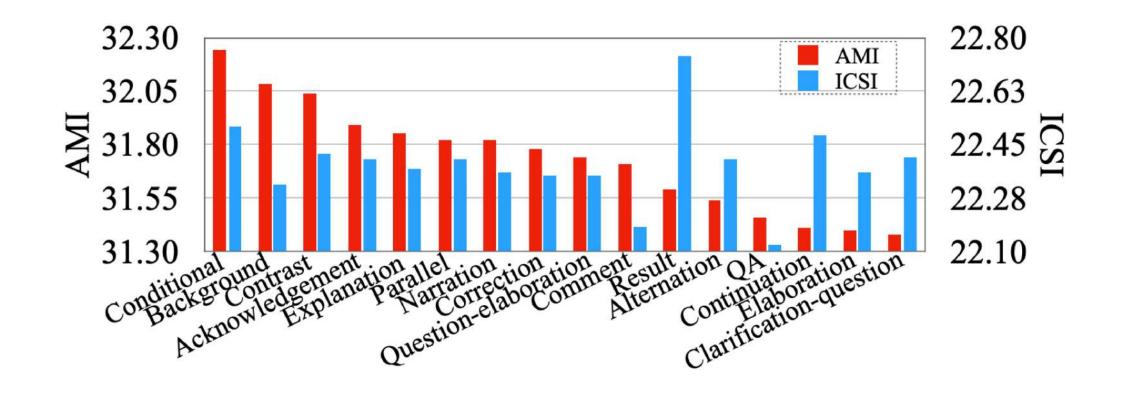
• Effect of the number of dialogue discourse.



• Effect of the quality of dialogue discourse.



• Effect of the type of dialogue discourse.



- Effect of the type of dialogue discourse.
 - filter out *N* useless relations.

	Model	R-1	R-2	R-L
AMI	DDAMS	51.42	20.99	24.89
	filter-useless-3	51.28	19.68	23.84
	filter-useless-5	51.44	20.26	24.11
ICSI	DDAMS	39.66	10.09	17.53
	filter-useless-3	39.71	9.64	17.46
	filter-useless-5	39.21	9.52	17.33

- Effect of meeting graph
 - taking the type of vertices into consideration, our model DDAMS can get better results.

	Model	R-1	R-2	R-L
AMI	DDAMS	51.42	20.99	24.89
	DDAMS (w/ Levi graph)	51.46	20.75	24.31
ICSI	DDAMS	39.66	10.09	17.53
	DDAMS (w/ Levi graph)	39.20	9.54	17.48

• Effect of attention mechanisms.

	Model	R-1	R-2	R-L
AMI	DDAMS	51.42	20.99	24.89
	w/o utter-attn	51.22	20.57	25.02
	w/o word-attn	50.27	19.81	23.91
ICSI	DDAMS	39.66	10.09	17.53
	w/o utter-attn	39.59	9.90	17.24
	w/o word-attn	38.96	9.61	17.40

- Effect of pseudo-summarization data.
 - pretraining on pseudo-summarization data constructed based on RBDA still achieves a better result, which indicates the rationality of our pretraining strategy.

	Model	R-1	R-2	R-L
AMI	DDAMS	51.42	20.99	24.89
	+ RbDa	52.94	21.96	25.05
	+ DdaDA	53.15	22.32	25.67
ICSI	DDAMS	39.66	10.09	17.53
	+ RbDa	39.42	10.60	18.19
	+ DdaDA	40.41	11.02	19.18

Case Study

• Utterance 1 and 3 are both related to two utterances, which make them the core nodes of our graph.

	Inform	U ₁	Marketing ExpertThe fashion trends are that people want sort of clothes and shoes and things with fruit and vegetables theme. U_1	
(a) Sentence	Access	<i>U</i> ₂	User If you start making the buttons fruit shaped, it might Interface : make it more complicated to use . Desired Desired to use . (b) DDAMS	
(a) -Gated Inform		U ₃	Manager : As we know how fickle the fashion markets are. U_3	
	Inform	<i>U</i> ₄	Project It just seems realistic that the remote control market isn't Manager 'the thing which takes in those kinds of fashion trends . U_4	
Ground-tru	-truth The Marketing Expert presented trends in the remote control market and the fruit and vegetable and spongy material trends in fashion.			
Pointer-Ge	Generator They discussed the possibility of a fruit or fruit and fruit.			
Sentence-O	entence-Gated The need to incorporate a fruit theme into the design of the remote.			
DDAMS		The	buttons will be included in a fruit and vegetable theme into the shape of the remote control.	

Conclusion

- We make the first attempt to successfully explore dialogue discourse to model the utterances interactions for meeting summarization.
- We devise a dialogue discourse-aware data augmentation strategy to alleviate the data insufficiency problem.
- Extensive experiments show that our model achieves SOTA performance.

