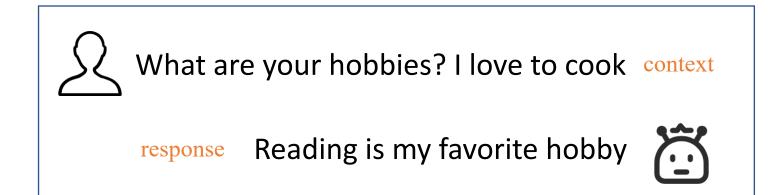
# Group-wise Contrastive Learning for Neural Dialogue Generation

EMNLP 2020

Hengyi Cai<sup>†,§</sup>\* Hongshen Chen<sup>‡</sup> Yonghao Song<sup>†</sup>, Zhuoye Ding<sup>‡</sup>, Yongjun Bao<sup>‡</sup>, Weipeng Yan<sup>‡</sup>, and Xiaofang Zhao<sup>†</sup> <sup>†</sup>Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China <sup>§</sup>University of Chinese Academy of Sciences, Beijing, China <sup>†</sup>JD.com, China caihengyi@ict.ac.cn, ac@chenhongshen.com

## Author

- Hengyi Cai (蔡恒毅)
  - Ph.D. student at Institute of Computing Technology, C.A.S.
  - EMNLP19、AAAI20、ACL20、IJCAI20、EMNLP20


- Hongshen Chen (陈宏申)
  - NLP tech lead for JD.com recommendation platform



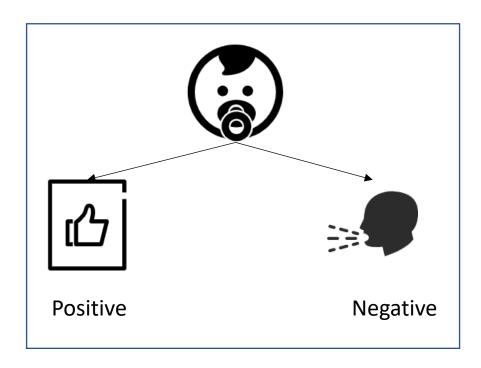


## Task

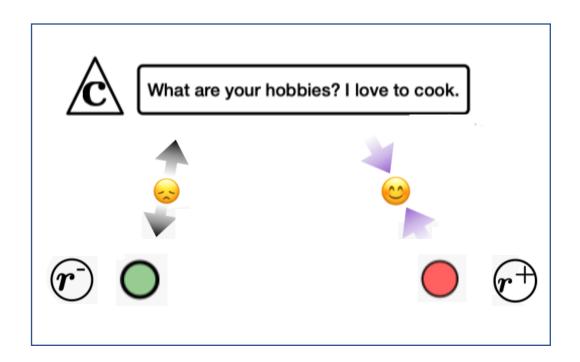
• Neural Dialogue Generation



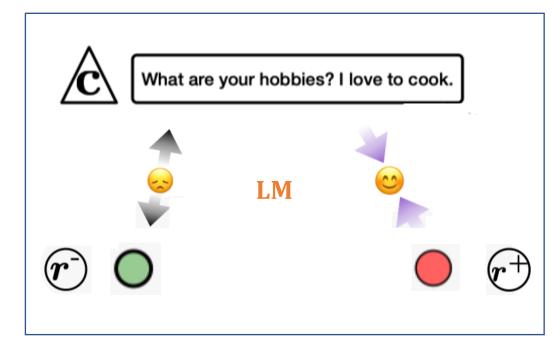
## Problem


- Maximum Likelihood Estimation (MLE) Objective
  - relatively high frequencies in conversational datasets




Safe but Dull and Vacuous

#### Motivation

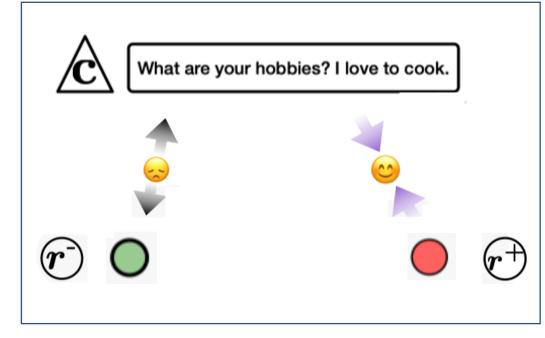

• Humans not only learn from the positive signals but also benefit from correcting behaviors of undesirable actions.



• Contrastive Learning



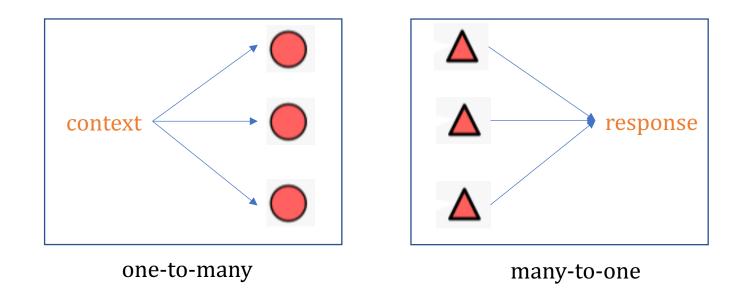
• Contrastive Learning




$$\begin{split} \mathcal{L}''(\boldsymbol{\theta}; \mathbb{D}) &= \\ &- \frac{1}{N} \sum_{(\boldsymbol{c}, \boldsymbol{r}) \in \mathbb{D}} \log \sigma(\operatorname{lm}[(\boldsymbol{c}, \boldsymbol{r})^{+}; \boldsymbol{\theta}]) \\ &- \frac{1}{N} \sum_{(\boldsymbol{c}, \boldsymbol{r}) \in \mathbb{D}} \log \left[1 - \sigma(\operatorname{lm}[(\boldsymbol{c}, \boldsymbol{r})^{-}; \boldsymbol{\theta}])\right] \end{split}$$

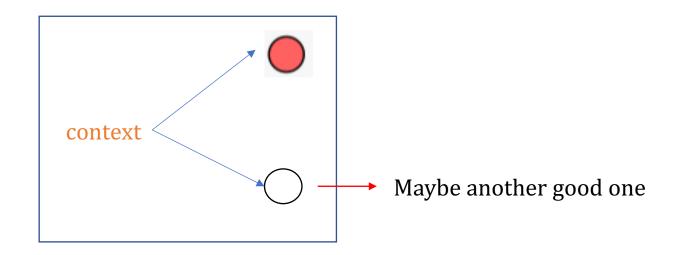
• Contrastive Learning

$$\mathcal{D}((\boldsymbol{c}, \boldsymbol{r}); \boldsymbol{\theta}, \boldsymbol{\phi}) = \log rac{p_m(\boldsymbol{r} | \boldsymbol{c}, \boldsymbol{\theta})}{p_n(\boldsymbol{r} | \boldsymbol{c}, \boldsymbol{\phi})}$$

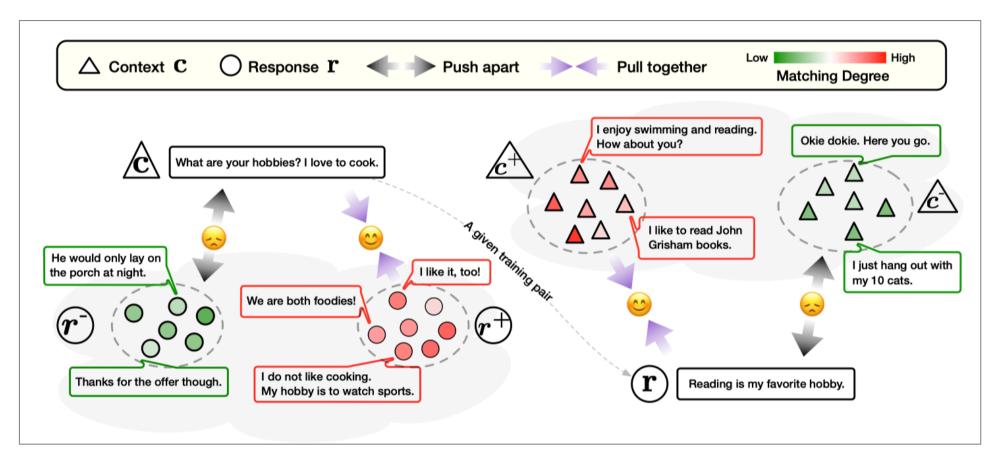

pretrained baseline model



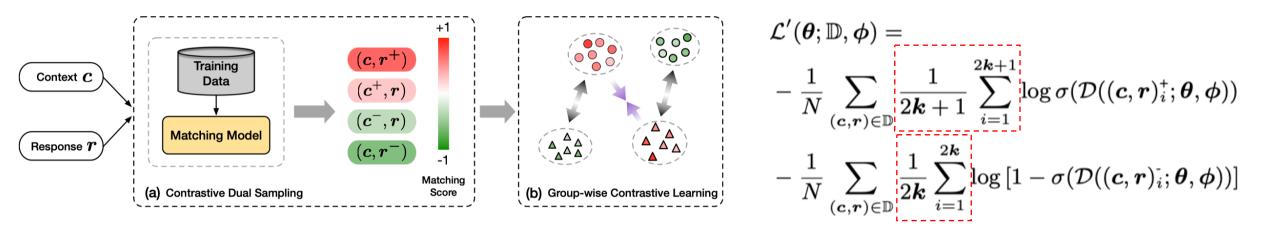
$$egin{split} \mathcal{L}''(m{ heta};\mathbb{D},m{\phi}) = \ &-rac{1}{N}\sum_{(m{c},m{r})\in\mathbb{D}}\log\sigma(\mathcal{D}((m{c},m{r})^{+};m{ heta},m{\phi})) \ &-rac{1}{N}\sum_{(m{c},m{r})\in\mathbb{D}}\log\left[1-\sigma(\mathcal{D}((m{c},m{r})^{-};m{ heta},m{\phi}))
ight] \end{split}$$


## Problem

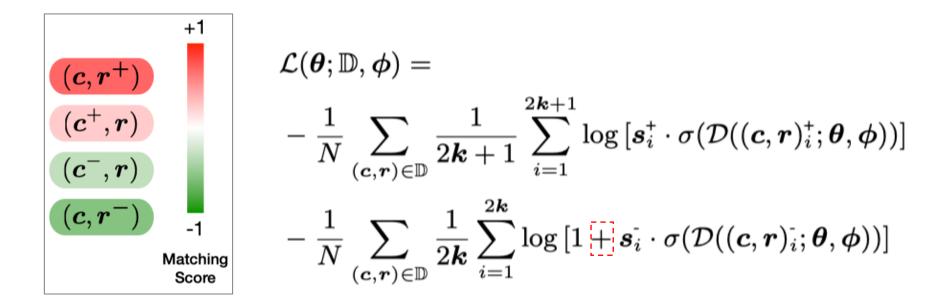
• multi-mapping relations




## Problem


• Single pair contrastive learning




• Contrastive Dual Sampling



• Group-wise Contrastive Learning



• Weighted Group-wise Contrastive Learning



## Experiments

|                           | PersonaChat | Douban  | OpenSubtitles |
|---------------------------|-------------|---------|---------------|
| #context-response pairs   | 140,248     | 218,039 | 353,046       |
| Avg. #turns per context   | 2.69        | 3.94    | 3.79          |
| Avg. #words per utterance | 11.96       | 15.28   | 6.85          |
| Training Pairs            | 113,558     | 198,039 | 293,129       |
| Validation Pairs          | 13,602      | 10,000  | 29,960        |
| Test Pairs                | 13,088      | 10,000  | 29,957        |
| #Tokens                   | 18,029      | 40,000  | 40,000        |

Table 1: Data statistics for PersonaChat, Douban and OpenSubtitles datasets.

|     | Models                              | BLEU-1/2/3/4                                          | Dist-1 | Dist-2 | Dist-3 | Avg.  | Ext.  | Gre.  | Coh.  | Ent-1 / 2            |
|-----|-------------------------------------|-------------------------------------------------------|--------|--------|--------|-------|-------|-------|-------|----------------------|
| (a) | SEQ2SEQ                             | 12.040 / 3.9950 / 0.8815 / 0.2312                     | 0.4309 | 2.045  | 4.303  | 36.33 | 28.66 | 63.64 | 41.66 | 6.891 / 10.81        |
|     | SEQ2SEQ (►)                         | 13.660 / 4.9160 / 1.5970 / 0.6122                     | 0.8492 | 5.093  | 12.000 | 39.76 | 31.74 | 64.76 | 49.39 | 7.016 / 10.90        |
|     | HRED                                | 12.410 / 3.8360 / 0.8455 / 0.2364                     | 0.4744 | 2.546  | 6.127  | 36.52 | 28.37 | 64.12 | 39.08 | 6.792 / 10.66        |
|     | HRED (►)                            | 13.180 / 4.3220 / 1.0360 / 0.3274                     | 0.7130 | 4.468  | 11.220 | 38.54 | 29.65 | 64.26 | 44.07 | 6.931 / 10.84        |
|     | TRANSFORMER                         | 11.460 / 3.2080 / 0.5389 / 0.1476                     | 0.4813 | 2.544  | 6.146  | 35.72 | 27.38 | 63.61 | 38.02 | 6.804 / 10.55        |
|     | TRANSFORMER $(\blacktriangleright)$ | 12.660 / 3.8920 / 0.8406 / 0.2577                     | 0.7859 | 4.562  | 10.950 | 37.42 | 28.95 | 64.02 | 41.96 | 6.918 / 10.80        |
|     | HRAN                                | 12.190 / 3.8290 / 0.7752 / 0.2171                     | 0.5074 | 2.883  | 7.104  | 36.53 | 28.08 | 63.58 | 40.22 | <b>6.964</b> / 10.83 |
|     | HRAN (►)                            | 13.430 / 4.5030 / 1.0630 / 0.3513                     | 0.7713 | 4.974  | 12.380 | 39.04 | 30.08 | 64.48 | 46.63 | 6.942 / <b>10.87</b> |
|     | SEQ2SEQ                             | 5.585 / 0.7887 / 0.1008 / 0.0296                      | 1.1610 | 6.105  | 13.100 | 46.75 | 36.80 | 53.52 | 52.13 | 7.225 / 11.13        |
|     | Seq2Seq (►)                         | 5.821 / 0.7910 / 0.1053 / 0.0377                      | 1.3010 | 7.935  | 18.070 | 46.96 | 36.99 | 53.41 | 53.40 | 7.464 / 11.66        |
|     | HRED                                | <b>5.899</b> / 0.7925 / 0.0786 / 0.0206               | 0.8334 | 5.147  | 14.160 | 48.12 | 36.50 | 54.20 | 49.99 | 7.107 / 10.90        |
| (b) | HRED (►)                            | 5.778 / <b>0.7968 / 0.0996 / 0.0387</b>               | 1.2910 | 7.461  | 19.450 | 48.23 | 36.51 | 53.34 | 50.31 | 7.436 / 11.10        |
| (0) | TRANSFORMER                         | 5.229 / 0.6443 / 0.0764 / 0.0240                      | 1.1140 | 5.658  | 13.830 | 45.45 | 35.45 | 53.04 | 48.04 | 7.084 / 11.15        |
|     | TRANSFORMER $(\blacktriangleright)$ | 5.386 / 0.6460 / 0.0889 / 0.0274                      | 1.3280 | 6.723  | 15.800 | 45.96 | 36.11 | 53.33 | 48.92 | 7.238 / 11.16        |
|     | HRAN                                | 5.366 / 0.7229 / <b>0.0860</b> / 0.0182               | 1.0960 | 6.679  | 17.250 | 47.44 | 36.35 | 53.93 | 50.25 | 7.202 / <b>11.15</b> |
|     | HRAN (►)                            | 5.541 / 0.7424 / 0.0723 / 0.0194                      | 1.6630 | 10.030 | 24.240 | 48.01 | 36.99 | 53.46 | 51.81 | <b>7.394 /</b> 10.94 |
|     | SEQ2SEQ                             | 5.666 / 1.0870 / <b>0.2471</b> / 0.0416               | 0.2880 | 2.110  | 5.566  | 54.22 | 46.11 | 63.96 | 56.82 | 6.685 / 10.54        |
|     | Seq2Seq (►)                         | 5.696 / 1.1290 / 0.2199 / 0.0476                      | 0.4495 | 3.681  | 10.860 | 54.32 | 47.13 | 64.54 | 58.60 | 6.792 / 10.80        |
|     | HRED                                | 5.489 / 0.9953 / 0.2206 / 0.0711                      | 0.3020 | 2.179  | 6.355  | 54.61 | 54.36 | 67.91 | 56.45 | 6.699 / 10.74        |
| (c) | HRED (►)                            | 5.670 / 1.0930 / 0.2461 / 0.0828                      | 0.4490 | 3.099  | 8.949  | 54.19 | 54.36 | 68.16 | 57.26 | 6.722 / 10.80        |
|     | TRANSFORMER                         | 4.619 / <b>0.8294</b> / 0.1500 / 0.0307               | 0.3470 | 2.038  | 5.028  | 52.29 | 44.21 | 63.16 | 53.40 | 6.677 / 10.40        |
|     | TRANSFORMER $(\blacktriangleright)$ | <b>4.712</b> / 0.8197 / <b>0.1744</b> / <b>0.0314</b> | 0.3897 | 2.437  | 6.188  | 52.34 | 45.12 | 63.52 | 54.11 | 6.722 / 10.50        |
|     | HRAN                                | 5.090 / 0.8424 / 0.1665 / 0.0405                      | 0.3205 | 2.604  | 8.188  | 54.74 | 54.52 | 68.16 | 56.58 | 6.556 / 10.53        |
|     | HRAN (►)                            | 5.423 / 0.9192 / 0.1913 / 0.0529                      | 0.5034 | 3.935  | 11.920 | 54.40 | 54.54 | 68.30 | 57.48 | 6.699 / 10.89        |

| Learning Approaches | BLEU-1 / 2 / 3 / 4                                     | Dist-1 | Dist-2 | Dist-3 | Avg.  | Ext.  | Gre.  | Coh.  | Ent-1 / 2            |
|---------------------|--------------------------------------------------------|--------|--------|--------|-------|-------|-------|-------|----------------------|
| Adversarial         | 12.190 / 4.0060 / 0.8950 / 0.2644                      | 0.6269 | 3.357  | 7.374  | 35.93 | 29.00 | 63.65 | 42.38 | 6.980 / 10.88        |
| MMI                 | <b>14.030</b> / 4.6460 / 1.3340 / 0.5022               | 0.4734 | 2.443  | 5.515  | 39.34 | 30.92 | 64.84 | 45.16 | 6.874 / 10.65        |
| DEEPRL              | 12.660 / 4.0150 / 1.0140 / 0.3314                      | 0.6838 | 3.838  | 8.581  | 37.23 | 29.68 | 64.30 | 44.13 | 6.885 / 10.85        |
| CVAE                | 11.570 / 2.8100 / 0.6357 / 0.1714                      | 0.2876 | 2.326  | 7.506  | 39.29 | 30.61 | 63.67 | 41.76 | 6.869 / 10.82        |
| DIALOGWAE           | 11.430 / 2.9260 / 0.5676 / 0.1436                      | 0.9936 | 5.080  | 9.928  | 38.68 | 28.70 | 63.39 | 41.06 | 7.009 / <b>11.09</b> |
| Ours                | 13.660 / <b>4.9160</b> / <b>1.5970</b> / <b>0.6122</b> | 0.8492 | 5.093  | 12.000 | 39.76 | 31.74 | 64.76 | 49.39 | <b>7.016 /</b> 10.90 |

Table 3: Performance (%) of our approach instantiated on naive SEQ2SEQ and baseline approaches on PersonaChat.

- Human Evaluation
  - fluency, informativeness, coherence and engagingness.

| Opponent             | Win | Loss | Tie | Kappa  |
|----------------------|-----|------|-----|--------|
| Ours vs. VANILLA MLE | 53% | 10%  | 37% | 0.5750 |
| Ours vs. Adversarial | 47% | 15%  | 38% | 0.5495 |
| Ours vs. MMI         | 43% | 12%  | 45% | 0.5863 |
| Ours vs. DEEPRL      | 40% | 22%  | 38% | 0.6036 |
| Ours vs. CVAE        | 40% | 15%  | 45% | 0.5510 |
| Ours vs. DIALOGWAE   | 45% | 18%  | 37% | 0.4216 |

Table 4: The results of human evaluation on the test set of PersonaChat.

| Framework variants                   | BLEU-1 / 2 / 3 / 4               | Dist-1 | Dist-2 | Dist-3 | Avg.  | Ext.  | Gre.  | Coh.  | Ent-1 / 2            |
|--------------------------------------|----------------------------------|--------|--------|--------|-------|-------|-------|-------|----------------------|
| (a) w/o group-wise sampling          | 12.870 / 4.102 / 0.9564 / 0.2308 | 0.3965 | 2.070  | 4.633  | 36.52 | 29.09 | 64.21 | 42.40 | 6.836 / 10.62        |
| (b) w/o group-wise positive sampling | 13.120 / 4.800 / 1.4180 / 0.5967 | 0.4632 | 2.270  | 5.002  | 38.26 | 31.18 | 64.66 | 43.03 | 6.812 / 10.49        |
| (c) w/o group-wise negative sampling | 13.210 / 4.698 / 1.3970 / 0.5587 | 0.7175 | 3.532  | 7.473  | 38.23 | 30.96 | 64.62 | 46.27 | 6.911 / 10.68        |
| (d) w/o response-side sampling       | 13.340 / 4.730 / 1.4820 / 0.5779 | 0.8487 | 4.964  | 11.340 | 39.31 | 31.51 | 64.66 | 48.35 | 6.938 / 10.75        |
| (e) w/o context-side sampling        | 13.170 / 4.539 / 1.4160 / 0.5308 | 0.8455 | 4.892  | 11.210 | 39.57 | 31.81 | 64.56 | 47.19 | 6.904 / 10.66        |
| (f) w/o impact of matching scores    | 13.560 / 4.359 / 1.1140 / 0.3823 | 0.6086 | 3.809  | 9.037  | 38.78 | 30.35 | 64.44 | 46.88 | 6.952 / <b>10.90</b> |
| Full version                         | 13.660 / 4.916 / 1.5970 / 0.6122 | 0.8492 | 5.093  | 12.000 | 39.76 | 31.74 | 64.76 | 49.39 | 7.016 / 10.90        |

Table 5: Ablation test (%) using SEQ2SEQ with different framework variants on PersonaChat.

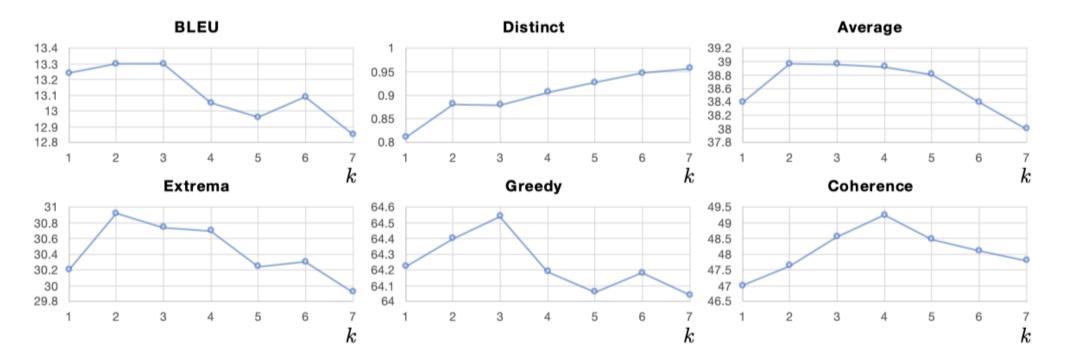



Figure 3: Evaluation results (%) with different group size k on the validation set of PersonaChat using the proposed framework instantiated on SEQ2SEQ. BLEU-1 and Dist-1 are denoted as "BLEU" and "Distinct", respectively.

## Conclusion

- Introduce contrastive learning to dialogue generation.
- Dual Sampling and Weighted Group-wise contrastive learning.
- Extensive Experiments and Good Results.