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| Non-Autoregressive Decoding
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| Non-Autoregressive Decoding
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| Glancing Transformer
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| Glancing Transformer: Training
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| Glancing Sampling Strategy
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| Glancing Sampling Strategy
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| Glancing Transformer: Inference
* We need to decide the output lengths before decoding.

* An additional [LENGTH] token is added to the source input, and the
encoder output for the [LENGTH] token is used to predict the length.
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| switch-GLAT: Code-Switch Decoder
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| switch-GLAT: Code-Switch Back-Translation

Through this process, abundant code-switched sentences can be generated,
which helps to learn better-aligned cross-lingual representations.
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| Experiments

(1) WMT-EDF: We collect 4 language pairs from WMT-14 English (En)
German (De) and English (En) & French (Fr). All three languages belong
to Indo-European language family and are relatively close on linguistics.

(2) WMT-EFZ: We also collect 4 language pairs from WMT-14 English (En)
French (Fr) and WMT-17 English (En) & Chinese (Zh), which are distant
languages on linguistics and their relationships are more difficult to learn.

(3) WMT-many: We also gather 10 language pairs from WMT-14 English (En)
German (De), English (En) & French (Fr), WMT-16 English (En)
Russian (Ru), English (En) & Romanian (Ro) and WMT-17 English (En)
Chinese (Zh) to test switch-GLAT on more diverse language pairs.
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| Result

WMT-EDF WMT-EFZ
Models
En-De  De-En En-Fr Fr-En Avg Speed En-Fr Fr-En En-Zh  Zh-En Avg

Bilingual models

Transformer 2777 31.b5 38.80 37.36 33.86 1.3X% 38.80 37.35 23.60 24.05 30.95

GLAT 26.09 30.53 38.62 34.44 3242 6.3X 38.62 34.44 21.05 22.89 29.25

Multilingual models

M-Transformer 25.84 31.57 38.52 36.03 32.99 1.0X 38.06 35.07 20.76 22.19 29.02

CLSR 23.51 31.29 38.58 34.67 32.01 0.9x 37.39 35.62 20.23 21.13 @ 28.59

Adapter 22.19  29.56  40.72 35.88 32.08 0.9x 40.13 35.02 19.87 21.29  29.08
- MNAT ~ 13.82 21.89 24.31 25.28 21.32 5.9x 19.46  20.18 7.89 7.35 13.72

switch-GLAT 25.27 31.29 40.81 36.00 33.34 6.2 X 40.54 36.48 19.47  22.55 29.76
—w/oglancing 17.76  23.28 25.91 29.15 24.02 6.0X 21.28 21.97 8.62 8.02 14.97
—w/o CSBT 24.29 29.03 36.45 34.09 30.97 6.2X 35.17  33.65 18.32  20.37  26.87
—w/o CCS 24.72 29.51 37.32 34.17 31.43 6.1X 35.96  33.61 18.45 20.83 27.21

Table 1: Translation performance (BLEU) on WMT-EDF/EFZ!. Avg means the average BLEU score.
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| Result

Models WMT-many

En-De  De-En En-Fr Fr-En En-Ro Ro-En  En-Ru  Ru-En  En-Zh  Zh-En Avg
Bilingual models
Transformer 27.77 31.55 3880 37.35 33.01 33.59 28.22 29.89 23.60 24.05 30.78
GLAT 26.09 30.53 38.62 34.44 31.83 32.59 25.42 28.13 21.05 22.89 29.20
Multilingual models
M-Transformer 23.14  29.38 35.19 34.07 34.36 35.26 24.63 29.14 16.63 20.17 28.19
CLSR 21.57 30.01 34.07 32.72 30.61 35.29 19.13 30.27 16.28 20.19 27.01

_ Adapter 23.26 29.87 38.79 40.03 30.42 32.01 22.87 26.38 18.29 20.31 = 28.22

MNAT 8.33 13.86 12.07 19.21 12.89 21.36 7.66 15.43 4.85 6.01 12.16

switch-GLAT 24.18 30.49 3947 36.30 31.93 32.40 24.16 28.33 16.25  21.23 28.47
— w/o glancing 6.83 16.29 11.08 20.33 13.57  23.34 7.57 18.25 7.31 6.74 13.13
—w/o CSBT 22.48 2791 31.62 33.55 29.89 3241 22.43 26.48 15.33 18.32 26.04
—w/o CCS 22.25 28.13 34.01 33.62 30.16 33.07 21.68 26.53 14.92 19.07  26.34

Table 2: Translation performance (BLEU) on WMT-many?. Avg means the average score.
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Result
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| Result

(a) Transformer (b) GLAT (c) M-Transformer (d) switch-GLAT

Figure 4: Representations learned by (a) Transformer (Vaswani et al.,2017), (b) GLAT (Qian et al.|
2020), (c) M-Transformer and (d) switch-GLAT, projected to 2D.

Gold word pairs from Open Multilingual WordNet (OMW) datasets

English words are displayed in blue color and German words in red.
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Result

e Cross-lingual word induction performance to see how well the similar words from different
languages are close to each other in the learned vector space

e Word Induction: golden word pairs are extracted from the OMW datasets

* Sentence Retrieval: Tatoeba dataset, Cosine similarity is leveraged to search the nearest neighbour

Word Induction Sentence Retrieval
En-De De-En En-Fr Fr-En Avg En-De De-En En-Fr Fr-En Avg
M-Transformer  30.2 31.7 32.7 38.9 | 33.3 23.6 22.3 24.5 23.8  23.5

Models

CLSR 249 258 375 362 311 196 183 268 279 23.2
_Adapter 328 345 401 428 B 546 = 23.7 = 26.9 302 NN
MNAT 2417 7233 T 324~ 336 283 138 < 176 182 163 165

switch-GLAT 33.8 36.2 41.9 46.3 395 348 36.3 36.9 372 363
—w/o glancing  24.3 24.6 32.9 33.7 1289 18.2 22.8 19.2 20.3  20.1
—w/o CSBT 28.2 30.1 31.9 37.8 32.0 17.6 21.4 23.3 25.3 21.8
—w/o CCS 30.5 29.7 33.6 35.8 324 188 22.9 22.7 21.6 21.5

Table 3: Results of quality analyses. Avg means the average accuracy.
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| Conclusion

e switch-GLAT, a non-autoregressive multilingual neural machine
translation model

* The multilingual translation performance and cross-lingual
representations can both be improved

 Parallel decoder enables a highly efficient inference
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