
Advanced Pre-training
language models

a brief introduction
Xiachong Feng

Outline
1. Encoder-Decoder

2. Attention

3. Transformer:《Attention is all you need》

4. Word embedding and pre-trained model

5. ELMo :《Deep contextualized word representations》

6. OpenAI GPT:《Improving Language Understanding by Generative Pre-Training》

7. BERT:《BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding》

8. Conclusion

Outline
1. Encoder-Decoder

2. Attention

3. Transformer:《Attention is all you need》

4. Word embedding and pre-trained model

5. ELMo:《Deep contextualized word representations》

6. OpenAI GPT:《Improving Language Understanding by Generative Pre-Training》

7. BERT:《BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding》

8. Conclusion

Encoder-Decoder

Encoder-Decoder Framework

𝑆𝑜𝑢𝑟𝑐𝑒 =< 𝑥*, 𝑥,, … 𝑥. >

𝑇𝑎𝑟𝑔𝑒𝑡 =< 𝑦*, 𝑦,, … 𝑦5 >

𝐶 = 𝐹(𝑥*, 𝑥*, … 𝑥.)

𝑦: = 𝑔(𝐶, 𝑦*, 𝑦,, … , 𝑦:;*)

𝑦* = 𝑓(𝐶)

𝑦, = 𝑓(𝐶, 𝑦*)

𝑦= = 𝑓(𝐶, 𝑦*, 𝑦,)

• When the sentence is short, context vector

may retain some important information

• When the sentence is long, context vector

will lose some information such as

semantic.

Outline
1. Encoder-Decoder

2. Attention

3. Transformer:《Attention is all you need》

4. Word embedding and pre-trained model

5. ELMo:《Deep contextualized word representations》

6. OpenAI GPT:《Improving Language Understanding by Generative Pre-Training》

7. BERT:《BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding》

8. Conclusion

Soft-Attention
𝑦* = 𝑓(𝐶*)

𝑦, = 𝑓(𝐶,, 𝑦*)

𝑦= = 𝑓(𝐶=, 𝑦*, 𝑦,)

𝐶: =>
?@*

A
𝑎:?ℎ?

Core idea of Attention

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 𝑄𝑢𝑒𝑟𝑦, 𝑆𝑜𝑢𝑟𝑐𝑒 =>
:@*

A
𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 𝑄𝑢𝑒𝑟𝑦, 𝐾𝑒𝑦: ∗ 𝑉𝑎𝑙𝑢𝑒:

𝐷𝑜𝑡: 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 𝑄𝑢𝑒𝑟𝑦, 𝐾𝑒𝑦: = 𝑄𝑢𝑒𝑟𝑦 N 𝐾𝑒𝑦:

𝐶𝑜𝑠𝑖𝑛𝑒: 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 𝑄𝑢𝑒𝑟𝑦, 𝐾𝑒𝑦: =
𝑄𝑢𝑒𝑟𝑦 N 𝐾𝑒𝑦:

| 𝑄𝑢𝑒𝑟𝑦 | N ||𝐾𝑒𝑦:||
𝑀𝐿𝑃: 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 𝑄𝑢𝑒𝑟𝑦, 𝐾𝑒𝑦: = MLP(𝑄𝑢𝑒𝑟𝑦, 𝐾𝑒𝑦:)

Attention Timeline

2014
Recurrent Models
Of Visual attention

2014-2015
Attention in

Neural machine translation

2015-2016
Attention-based
RNN/CNN in NLP

2017
Self-Attention
(Transformer)

Outline
1. Encoder-Decoder

2. Attention

3. Transformer:《Attention is all you need》

4. Word embedding and pre-trained model

5. ELMo:《Deep contextualized word representations》

6. OpenAI GPT:《Improving Language Understanding by Generative Pre-Training》

7. BERT:《BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding》

8. Conclusion

Attention is all you need

Key words

• Transformer

• Faster

• Encoder-Decoder

• Scaled Dot-Product Attention

• Multi-Head Attention

• Position encoding

• Residual connections

A High-Level Look

Encoder-Decoder

1. The encoders are all identical in structure (yet they do not share weights).
2. The encoder’s inputs first flow through a self-attention layer – a layer that

helps the encoder look at other words in the input sentence as it encodes
a specific word.

3. The outputs of the self-attention layer are fed to a feed-forward neural
network. The exact same feed-forward network is independently applied
to each position.

4. The decoder has both those layers, but between them is an attention
layer that helps the decoder focus on relevant parts of the input sentence

Encoder Detail

1. Word embedding
2. Self-attention
3. FFNN

dependent

independent

Self-Attention High Level
As the model processes each word (each position in the input
sequence), self attention allows it to look at other positions in
the input sequence for clues that can help lead to a better
encoding for this word.

Self-Attention in Detail

Query vector

Key vector

Value vector

Size of 512

Size of 64

The first step in calculating
self-attention is to create
three vectors from each of
the encoder’s input vectors

Self-Attention in Detail
• The second step in

calculating self-
attention is to
calculate a score.

• The third and forth
steps are to divide the
scores by 8, then pass
the result through a
softmax operation.

• The fifth step is to
multiply each value
vector by the softmax
score

• The sixth step is to
sum up the weighted
value vectors.

Scaled Dot-Product Attention

Self-Attention in Detail

The self-attention calculation in matrix form

Multi-head attention

Multi-head attention

Multi-head attention

Multi-head attention

Positional Encoding

The Residuals

Encoder-Decoder

Decoder

Linear and Softmax Layer

Transformer

Word embedding

FFNN output

Position embedding

Matrix

Q

K

V

Self attention: K=V=Q

Attention: K=V≠Q

Outline
1. Encoder-Decoder

2. Attention

3. Transformer:《Attention is all you need》

4. Word embedding and pre-trained model

5. ELMo:《Deep contextualized word representations》

6. OpenAI GPT:《Improving Language Understanding by Generative Pre-Training》

7. BERT:《BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding》

8. Conclusion

• Language model is a probability distribution over a

sequences of words.

• N-Gram Models

• Uni-gram

• Bi-gram

• Tri-gram

• Neural network language models(NNLM)

Language model

𝑃 𝑤*,𝑤,,… ,𝑤. = 𝑝 𝑤* 𝑝 𝑤, 𝑤* 𝑝 𝑤= 𝑤*,𝑤, …

NNLM

𝑍Z = tanh(𝑊𝑥Z + 𝑝)
𝑦Z = 𝑈𝑧Z + 𝑞
𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑦Z)

NNLM and Word2Vec

Word2vec(2013)Neural probabilistic language model(2003)

Pre-training
• Word embedding

• Word2vec

• Glove

• FastText

• …

• Transfer learning

Outline
1. Encoder-Decoder

2. Attention

3. Transformer:《Attention is all you need》

4. Word embedding and pre-trained model

5. ELMo:《Deep contextualized word representations》

6. OpenAI GPT:《Improving Language Understanding by Generative Pre-Training》

7. BERT:《BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding》

8. Conclusion

Overview

ELMo
• ELMo (Embeddings from Language Models)
• complex characteristics of word use (syntax and

semantics)
• across linguistic contexts (polysemy)

• Feature-Based
• ELMo representations are deep, in the sense that

they are a function of all of the internal layers of the
biLM.

• The higher-level LSTM states capture context-
dependent aspects of word meaning, while lower-
level states model aspects of syntax.

Bidirectional language models
• Forward language model

• Backward language model

• Jointly maximizes the log likelihood of the forward
and backward directions

Token representation

Softmax layer

share some weights between directions instead of using completely independent parameters.

Embedding from language models
• ELMo is a task specific combination of the intermediate layer

representations in the biLM.
• For k-th token, L-layer bi-directional Language models

computes 2L+1 representations:

• For a specific down-stream task, ELMo would learn a weight
to combine these representations(In the simplest just selects
the top layer)

Embedding from language models

Using biLMs for supervised NLP tasks
• Concatenate the ELMo vector with initial word embedding

and pass representation into the task RNN.

• Including ELMo at the output of the task RNN by introducing
another set of output specific linear weights.

• Add a moderate amount of dropout to ELMo, in some cases to
regularize the ELMo weights by adding to the loss.

Experiment

1. Question answering
2. Textual entailment
3. Semantic role labeling
4. Coreference resolution
5. Named entity extraction
6. Sentiment analysis

ELMo
• Including representations from all layers improves overall

performance over just using the last layer, and including
contextual representations from the last layer improves
performance over the baseline.

• A small λ is preferred in most cases with ELMo.
• Including ELMo at the output of the biRNN in task-specific

architectures improves overall results for some tasks. but for
SRL (and coreference resolution, not shown) performance is
highest when it is included at just the input layer.

• The biLM is able to disambiguate both the part of speech and
word sense in the source sentence.

Outline
1. Encoder-Decoder

2. Attention

3. Transformer:《Attention is all you need》

4. Word embedding and pre-trained model

5. Elmo:《Deep contextualized word representations》

6. OpenAI GPT:《Improving Language Understanding by Generative Pre-Training》

7. BERT:《BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding》

8. Conclusion

OpenAI GPT
• Generative Pre-trained Transformer
• Their goal is to learn a universal representation that transfers

with little adaptation to a wide range of tasks.
• First, use a language modeling objective on the unlabeled data to

learn the initial parameters of a neural network model.
• Second, adapt these parameters to a target task using the

corresponding supervised objective.
• Highlight:
• Use transformer networks instead of LSTM to achieve

better capture long-term linguistic structure
• Include auxiliary training objectives in addition to the task

objective when fine-tuing.
• Demonstrate the effectiveness of the approach on a wide

range of tasks(significantly improving upon the state of
the art in 9 out of the 12 tasks studied)

Unsupervised pre-training
• Use a standard language modeling objective to maximize

the following likelihood:

• A multi-layer transformer decoder for the language model

token embedding matrix
position embedding matrix

context vector of tokens

number of layers

Supervised fine-tuning
• The final transformer block`s activation is fed into an added

linear output layer.

• Objective

• We additionally found that including language modeling as
an auxiliary objective to the fine-tuning helped learning by
(a) improving generalization of the supervised model, and
(b) accelerating convergence.

Task specific input transformations

convert structured inputs into an ordered sequence that our pre-trained model can process.

ordered
sentence
pairs, or
triplets of
document,
question,
and answers.

$

ELMo vs OpenAI GPT
• ELMo generalizes traditional word embedding research

along a different dimension. integrating contextual word
embeddings with existing task-specific
architectures.(feature based)

• OpenAI GPT is to pre-train some model architecture on a
LM objective before fine-tuning that same model for a
supervised downstream task.(fine tuning)

Outline
1. Encoder-Decoder

2. Attention

3. Transformer:《Attention is all you need》

4. Word embedding and pre-trained model

5. ELMo:《Deep contextualized word representations》

6. OpenAI GPT:《Improving Language Understanding by Generative Pre-Training》

7. BERT:《BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding》

8. Conclusion

BERT
• Bidirectional Encoder Representations from Transformers.
• Fine-tuning based
• New pre-training objective
• Masked language model (MLM)

• randomly masks some of the tokens from the input,
predict the original vocabulary id of the masked
word based only on its context.

• Next sentence prediction task
• Binarized (is or not)

• Pre-trained representations eliminate the needs of many
heavily engineered task-specific architectures.

• BERT advances the state-of-the-art for 11 NLP tasks.

Model Architecture
• BERT’s model architecture is a multi-layer bidirectional

Transformer encoder.
• L: number of layers
• H: hidden size
• A: number of self-attention heads.

• Model
• BERTBASE : L=12, H=768, A=12, Total

Parameters=110M(have an identical model size as OpenAI GPT for
comparison purposes)

• BERTLARGE : L=24, H=1024, A=16, Total
Parameters=340M

• Note:
• BERT: Bidirectional Transformer encoder
• OpenAI: Left-context-only Transformer decoder

Model Architecture

• BERT
• Uses a bidirectional transformer

• OpenAI GPT
• Uses a left-to-right transformer

• ELMo
• Uses the concatenation of independently trained left-to

right and right-to-left LSTM

Input Representation
• For a given token, its input representation is constructed by

summing the corresponding token, segment and position
embeddings.

• CLS: Special classification embedding for classification tasks
• EA, EB: Sentence pairs are packed together into a single

sequence. separate them with a special token ([SEP]).
• Learned positional embeddings

Tasks #1: Masked LM
• Definition: masking some percentage of the input tokens at

random, and then predicting only those masked tokens.
• The final hidden vectors corresponding to the mask tokens

are fed into an output softmax over the vocabulary, as in a
standard LM.

• In practice: 15%
• Downsides:
• Mismatch between pre-training and finetuning, since the

[MASK] token is never seen during fine-tuning.
• Only 15% of tokens are predicted in each batch, which

suggests that more pre-training steps may be required for
the model to converge.

Tasks #1: Masked LM
• Mismatch between pre-training and finetuning, since the

[MASK] token is never seen during fine-tuning.
1. 80% of the time: Replace the word with the [MASK] token

• For training LM
2. 10% of the time: Replace the word with a random word

• For adding noise
3. 10% of the time: Keep the word unchanged

• For the true
• Only 15% of tokens are predicted in each batch, which

suggests that more pre-training steps may be required for
the model to converge.
• empirical improvements of the MLM model far outweigh

the increased training cost.

my dog is hairy →my dog is [MASK]

my dog is hairy → my dog is apple

my dog is hairy → my dog is hairy

Tasks #2: Next Sentence Prediction
• In order to train a model that understands sentence

relationships.
• Binarized next sentence prediction task
• Choosing the sentences A and B for each pretraining

example, 50% of the time B is the actual next sentence that
follows A, and 50% of the time it is a random sentence from
the corpus.

Training
• The training loss is the sum of the mean masked LM

likelihood and mean next sentence prediction likelihood.

• Training of BERTBASE was performed on 4 Cloud TPUs in Pod
configuration (16 TPU chips total). 5 Training of BERTLARGE

was performed on 16 Cloud TPUs (64 TPU chips total). Each
pretraining took 4 days to complete.

Fine-tuning Procedure

Outline
1. Encoder-Decoder

2. Attention

3. Transformer:《Attention is all you need》

4. Word embedding and pre-trained model

5. ELMo:《Deep contextualized word representations》

6. OpenAI GPT:《Improving Language Understanding by Generative Pre-Training》

7. BERT:《BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding》

8. Conclusion

BERT vs GPT vs ELMo

• Pre-trained language representations
• Feature based: ELMO
• Fine-tuning: OpenAI GPT、BERT

• Direction
• Unidirectional: Elmo、OpenAI GPT
• Bidirectional: BERT

• Pre-training objective
• Elmo、OpenAI GPT：Traditional language model
• BERT：masked language model、next sentence prediction

Conclusion

Word2vec
Restrict by window size

ELMo
Not real contextual

GPT
unidirectional

BERT

Reference
• Peters, M. E. et al. Deep contextualized word representations. naacl (2018).

• Radford, A. & Salimans, T. Improving Language Understanding by Generative Pre-Training.
(2018).

• Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. BERT: Pre-training of Deep Bidirectional
Transformers for Language Understanding. (2018).

• Vaswani, Ashish, et al. Attention is all you need. (2017).

• 深度学习中的注意⼒机制 https://blog.csdn.net/qq_40027052/article/details/78421155

• 论⽂笔记：Attention is all you need https://www.jianshu.com/p/3f2d4bc126e6

• 自然语⾔处理中的自注意⼒机制 http://ir.dlut.edu.cn/news/detail/485

• Jay Alammar: https://jalammar.github.io/illustrated-transformer/

• [论⽂笔记]ELMo https://zhuanlan.zhihu.com/p/37684922

• BERT 笔记 http://blog.tvect.cc/archives/799

• 详细解读⾕歌新模型 BERT 为什么嗨翻 AI
https://mp.weixin.qq.com/s/8uZ2SJtzZhzQhoPY7XO9uw

• 自然语⾔处理中的语⾔模型预训练⽅法 http://ir.dlut.edu.cn/news/detail/485

• NLP的游戏规则从此改写？从word2vec, ELMo到BERT
https://mp.weixin.qq.com/s/I315hYPrxV0YYryqsUysXw

If I forget any tutorial, please forgive me, Thanks a lot for all of the excellent materials.

Thanks!

