Advanced Pre-training
language models
a brief introduction
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Encoder-Decoder

 When the sentence is short, context vector

r-—=—""~-"-"=-=--" I
may retain some important information : y1 = f(C :
I _ I
* When the sentence is long, context vector ! y2 = f(Cy1)
|
. . . = C) )
will lose some information such as L f(C1y2) :

semantic.
C =F(xq1,X1, - Xm) | | |

Encoder — ENEREc —— Decoder

yi = 9(C,y1,Y2) -, Yi-1)
Target =< y41,V5, ...V >

Source =< x1, X5, ...

Encoder-Decoder Framework
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Soft-Attention
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Core idea of Attention

Query

v . SoftMax(13—f b R 2

| A A

Valuel || Value2 | | Value3 | | Valued4 al a2 a3 a4

......

F R 3

Valuel | | Value2 | | Value3 | | Valued

l
Attention(Query, Source) = Z Similarity(Query, Key;) * Value;
i=1

— Dot:Similarity(Query, Key;) = Query - Key;

Query - Key;
[|Queryl| - ||Key;]|
— MLP: Similarity(Query, Key;) = MLP(Query, Key;)

— Cosine: Similarity(Query, Key;) =




Attention Timeline

2014

Recurrent Models
Of Visual attention

2015-2016

Attention-based
RNN/CNN in NLP

2014-2015
Attention in

Neural machine translation

2017
Self-Attention
(Transformer)
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Attention is all you need
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A High-Level Look
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Encoder-Decoder
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The encoders are all identical in structure (yet they do not share weights).

The encoder’s inputs first flow through a self-attention layer — a layer that
helps the encoder look at other words in the input sentence as it encodes
a specific word.

The outputs of the self-attention layer are fed to a feed-forward neural
network. The exact same feed-forward network is independently applied
to each position.

The decoder has both those layers, but between them is an attention
layer that helps the decoder focus on relevant parts of the input sentence



Encoder Detail
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Self-Attention High Level

As the model processes each word (each position in the input
sequence), self attention allows it to look at other positions in
the input sequence for clues that can help lead to a better
encoding for this word.
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didn_ didn_

& L
Cross_ Cross_
the_ the_
street_ street_
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it_ it_
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too_ too_
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Self-Attention in Detail

Input

Embedding
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The first step in calculating
Machines self-attention is to create
three vectors from each of

ol [ I ] the encoder’s input vectors

e [ ] we

SRR

Multiplying x1 by the WQ weight matrix produces q1, the "query" vector associated with that word. We end up creating a "query", a "key",
and a "value" projection of each word in the input sentence.



Self-Attention in Detail
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The second step in
calculating self-
attention is to
calculate a score.

The third and forth
steps are to divide the
scores by 8, then pass
the result through a
softmax operation.
The fifth step is to
multiply each value
vector by the softmax
score

The sixth step is to
sum up the weighted
value vectors.



Self-Attention in Detail
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The self-attention calculation in matrix form




Multi-head attention
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Multi-Head Attention

Multi-head attention
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Multi-head attention

1) Concatenate all the attention heads 2) Multiply with a weight
matrix that was trained
jointly with the model

‘ X

Multi-Head Attention

Linear |~ |

Concat

¢ X

Scaled Dot-Product ; "
Attention

3) The result would be the = matrix that captures information
from all the attention heads. We can send this forward to the FFNN




Multi-head attention

1) This is our 2) We embed 3) Splitinto 8 heads. 4) Calculate attention
input sentence* each word* We multiply X or using the resulting
with weight matrices Q/K/V matrices

X Wo©
Thint LWo~ Qo
Ma ‘ W(}V == Ki;
B
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* In all encoders other than #0, I
we don’t need embedding. . W,V =
We start directly with the output | #‘ Vi
of the encoder right below this one

Multi-Head Attention
-Concat

Scaled Dot-Product h
Attention g

5) Concatenate the resulting = matrices,
then multiply with weight matrix to
produce the output of the layer




Positional Encoding

1 ] ]
ENCODER #1 DECODER #1
A A S
ENCODER #0 DECODER #0
\ 3 A )
EMBEDDING
WITH TIME :
SIGNAL  x [ [ [ | x2 ] xs[ | [ ]
POSITIONAL , |
encooing b LT ta [ ] ts 0 i)
+ - -
EMBEDDINGS  x; [T [ T T T 2 ] 0 i
INPUT e SUIS etudiant

To give the model a sense of the order of the words, we add positional encoding vectors -- the values of which follow a specific pattern.



The Residuals
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Encoder-Decoder
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Decoder

Decoding time step: 1@3 4 56
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Linear and Softmax Layer

Which word in our vocabulary

. . ) . am
is associated with this index?

Get the index of the cell

with the highest value
(argmax)

log_probs AFER=EEREE R E RS EE

12345 * .. vocab_size

( Softmax )

logits | B
vocab_size

Decoder stack output



Transformer
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Language model

* Language model is a probability distribution over a
sequences of words.
P(wy, Wy, ..., wy) = p(w)p(wy|lwy)p(ws|wy, wy) ...
* N-Gram Models
* Uni-gram
* Bi-gram
* Tri-gram

 Neural network language models(NNLM)



NNLM
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NNLM and Word2Vec
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Pre-training

* Word embedding

e Word2vec
e Glove
* FastText

* Transfer learning
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Overview




ELMo

ELMo (Embeddings from Language Models)
 complex characteristics of word use (syntax and
semantics)

e across linguistic contexts (polysemy)

* Feature-Based

* ELMo representations are deep, in the sense that
they are a function of all of the internal layers of the
biLM.

* The higher-level LSTM states capture context-
dependent aspects of word meaning, while lower-
level states model aspects of syntax.



Bidirectional language models

Forward language model

p(tr b, tx) = [ ot | b1, ta, . taca).|.

Backward language model

N

p(t1,t,...,iN) = Hp(tk | thy1stht2s---5EN)
k=1

Jointly maximizes the log likelihood of the forward
and backward directions

N

©.. Token representation
E { logpits |11, « coullmi] 9x,§LSTM, B, " P
-

O, Softmax layer

F
+log p(tx | tk+1,---,tN1Od, O LsTrm|Od) )

share some weights between directions instead of using completely independent parameters.




Embedding from language models

 ELMo is a task specific combination of the intermediate layer
representations in the biLM.
* For k-th token, L-layer bi-directional Language models

computes 2L+1 representations:

= ;
R, = {xtM h éy,;IMlj-——l,...,L}

fhgy [3=0p..05 L},
* For a specific down-stream task, ELMo would learn a weight
to combine these representations(In the simplest just selects
the top layer E(Ry) = hi}

ELMotask (R @task task Z task hllc;jjw




Embedding from language models
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Using biLMs for supervised NLP tasks

* Concatenate the ELMo vector with initial word embedding
and pass representation into the task RNN.

xx; ELMo{3%*]

* Including ELMo at the output of the task RNN by introducing
another set of output specific linear weights.

[hy; ELMo{®%*]

 Add a moderate amount of dropout to ELMo, in some cases to
regularize the ELMo weights by adding \||w|3 to the loss.



Experiment

INCREASE
TASK PREVIOUS SOTA OUR ELMoO + (ABSOLUTE/
BASELINE BASELINE RELATIVE)
SQuAD | Liuetal. (2017) 84.4 | 81.1 85.8 4.7 124.9%
SNLI Chen et al. (2017) 88.6 || 88.0 88.7+0.17 0.7/5.8%
SRL He et al. (2017) 81.7 || 81.4 84.6 32/17.2%
Coref Lee et al. (2017) 67.2 || 67.2 70.4 3.2/9.8%
NER Peters et al. (2017) 91.93 +0.19 || 90.15 9222 +0.10 2.06/21%
SST-5 McCann et al. (2017) 53.7 || 51.4 54.7 £ 0.5 3.3/6.8%

Question answering

. Textual entailment

. Semantic role labeling
Coreference resolution
Named entity extraction
Sentiment analysis

DU R WwN e



ELMo

Including representations from all layers improves overall
performance over just using the last layer, and including
contextual representations from the last layer improves
performance over the baseline.

A small A is preferred in most cases with ELMo.

Including ELMo at the output of the biRNN in task-specific
architectures improves overall results for some tasks. but for
SRL (and coreference resolution, not shown) performance is

highest when it is included at just the input layer.

The biLM is able to disambiguate both the part of speech and

word sense in the source sentence.
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OpenAl GPT

Generative Pre-trained Transformer
Their goal is to learn a universal representation that transfers

with little adaptation to a wide range of tasks.

First, use a language modeling objective on the unlabeled data to
learn the initial parameters of a neural network model.

 Second, adapt these parameters to a target task using the
corresponding supervised objective.

Highlight:

* Use transformer networks instead of LSTM to achieve
better capture long-term linguistic structure

* Include auxiliary training objectives in addition to the task
objective when fine-tuing.

 Demonstrate the effectiveness of the approach on a wide
range of tasks(significantly improving upon the state of
the art in 9 out of the 12 tasks studied)



Unsupervised pre-training

* Use astandard language modeling objective to maximize
the following likelihood:

Ll(U) — ZlogP(uﬂui_k, - ,u,;_l;@)

A multi-layer transformer decoder for the language model

Text Task
Prediction | Classifier hO — U We -+ Wp
f h; = transformer_block(h;_1)Vi € [1,n] OpenAl GPT
=l P(u) = softmax(h, W1 ) - (&)
3 - g
FeedForward [ [ | 0~~~ "~~~ """ TTT T mT OO T T (\_T'T,_/ {\\T m,) iy

L)

12x —

Layerhom | | 1 We token embedding matrix |

O W, position embedding matrix |
Masked Mull ! :
selfptenton | [ 1 n number of layers !

Text & Position Embed




Supervised fine-tuning

e The final transformer block's activation is fed into an added
linear output layer.

OpenAl GPT
P(y|z',...,2™) = softmax(h]"W,). ;,I‘__\";L\J - |
@y - @&
* Objective M

Ly(C) = Y log P(yla',...,2a™). | L=

(z,y)

 We additionally found that including language modeling as
an auxiliary objective to the fine-tuning helped learning by
(a) improving generalization of the supervised model, and

(b) accelerating convergence. o T

= 2

n
S P

Ls(C) = LalC) 4 X EnlC) o

Layer

t
fe




Task specific input transformations

Classification Start Text Extract :|—— Transformer = Linear
Entailment Start Premise Delim | Hypothesis | Extract | > Transformer (= Linear

ordered ]
sentence Start Text 1 Delim Text 2 Extract |~ Transformer
pairs' or Slm"a”ty aw Lineal'
triplets of Start Text 2 Delim Text 1 Extract | -+ Transformer
document, A
guestion,

and answers. . -
Start Context Delim Answer 1 | Extract | > Transformer (= Linear —

Multiple Choice | Start Context Delim | Answer 2 | Extract |-+ Transformer -+ Linear {

Start Context Delim Answer N | Extract | = Transformer > Linear (—

convert structured inputs into an ordered sequence that our pre-trained model can process.



ELMo vs OpenAl GPT

ELMo generalizes traditional word embedding research
along a different dimension. integrating contextual word

embeddings with existing task-specific
architectures.(feature based)

OpenAl GPT is to pre-train some model architecture on a
LM objective before fine-tuning that same model for a
supervised downstream task.(fine tuning)
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BERT

* Bidirectional Encoder Representations from Transformers.
* Fine-tuning based
* New pre-training objective
 Masked language model (MLM)
 randomly masks some of the tokens from the input,
predict the original vocabulary id of the masked
word based only on its context.
* Next sentence prediction task
e Binarized (is or not)
* Pre-trained representations eliminate the needs of many
heavily engineered task-specific architectures.
 BERT advances the state-of-the-art for 11 NLP tasks.



Model Architecture

BERT’s model architecture is a multi-layer bidirectional

Transformer encoder.

 L: number of layers

* H: hidden size

 A: number of self-attention heads.
e Model

 BERTBase: L=12, H=768, A=12, Total

Parameters=110M (have an identical model size as OpenAl GPT for

comparison purposes)

e BERTLArGE : L=24, H=1024, A=16, Total
Parameters=340M

* Note:
e BERT: Bidirectional Transformer encoder

* OpenAl: Left-context-only Transformer decoder



Model Architecture

OpenAl GPT

 BERT

e Uses a bidirectional transformer
* OpenAl GPT

e Uses a left-to-right transformer

* ELMo
* Uses the concatenation of independently trained left-to

right and right-to-left LSTM



Input Representation

* For agiven token, its input representation is constructed by
summing the corresponding token, segment and position
embeddings.

N N
Input [CLS] ’ my dog is (cute} [SEP] he | likes H play | ##ing | [SEP]
Token
Embeddings E[CLS] Emy Edog Eis Ecute E[SEP] Ehe Elikes Eplay EMing E[SEP]
-+ -+ =+ -+ =+ -+ =+ -+ -+ =+ -+
Segment
Embeddings EA EA EA EA EA EA EB EB EB EB EB
-+ + + == + -+ =+ + -+ -+ +
Position
Embeddings E0 E1 Ez E3 E4 Es E6 E7 E8 E9 E10

* CLS: Special classification embedding for classification tasks
* Ea, EB: Sentence pairs are packed together into a single

sequence. separate them with a special token ([SEP]).
 Learned positional embeddings



Tasks #1: Masked LM

Definition: masking some percentage of the input tokens at
random, and then predicting only those masked tokens.

* The final hidden vectors corresponding to the mask tokens
are fed into an output softmax over the vocabulary, asin a
standard LM.

* In practice: 15%

* Downsides:

* Mismatch between pre-training and finetuning, since the
[MASK] token is never seen during fine-tuning.

* Only 15% of tokens are predicted in each batch, which
suggests that more pre-training steps may be required for
the model to converge.



Tasks #1: Masked LM

* Mismatch between pre-training and finetuning, since the
[MASK] token is never seen during fine-tuning.
1. 80% of the time: Replace the word with the [MASK] token
 Fortraining LM  mydog s hairy >my dog is [MASK]
2. 10% of the time: Replace the word with a random word
* For adding noise my dog is hairy - my dog is apple
3. 10% of the time: Keep the word unchanged
e Forthe true mydogis hairy > my dog is hairy
 Only 15% of tokens are predicted in each batch, which
suggests that more pre-training steps may be required for
the model to converge.
 empirical improvements of the MLM model far outweigh
the increased training cost.



Tasks #2: Next Sentence Prediction

In order to train a model that understands sentence
relationships.

Binarized next sentence prediction task

Choosing the sentences A and B for each pretraining
example, 50% of the time B is the actual next sentence that
follows A, and 50% of the time it is a random sentence from

the corpus.
Input — [CLS] the man went to [MASK] store [SEP]
he bought a gallon [MASK] milk [SEP]

Label = 1snext

Input — [CLS] the man [MASK] to the store [SEP]

penguin [MASK] are flight ##less birds [SEP]

Label — NotNext



Training
e Thetraining loss is the sum of the mean masked LM
likelihood and mean next sentence prediction likelihood.

* Training of BERTBASE was performed on 4 Cloud TPUs in Pod
configuration (16 TPU chips total). 5 Training of BERTLARGE
was performed on 16 Cloud TPUs (64 TPU chips total). Each
pretraining took 4 days to complete.



Fine-tuning Procedure
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BERT vs GPT vs ELMo

OpenAl GPT
[j I—] i]

O -

* Pre-trained language representations
* Feature based: ELMO
* Fine-tuning: OpenAl GPT., BERT
* Direction
* Unidirectional: EImo. OpenAl GPT
* Bidirectional: BERT
* Pre-training objective
 Elmo. OpenAl GPT : Traditional language model
 BERT : masked language model. next sentence prediction



Conclusion

Word2vec

Restrict by window size

GPT
unidirectional

ELMo

Not real contextual

BERT
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