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I Federated Iearning e Mglobal

An aggregatuon or all tne respective
local models (MA*MB*MC*MP)

* Federated learning (FL) provides a feasible
solution to train a global model across
multiple datasets without raw data

sharing.

 FLis a collaborative and privacy-aware
learning paradigm, which learns a global
model by aggregating the models trained
on local devices.

 Through FL, each client would not worry
about their private data exposed to other
clients, but they can collaboratively build a
pre-trained model together. Edge device - D

/E\verest Group® Federated Learning Edge device - A



Federated Averaging (FedAvg)

 The most used algorithms for FL are parameter-averaging based schemes (e.g.,
Federated Averaging)

Algorithm 1 FederatedAveraging. The K clients are
indexed by k; B is the local minibatch size, E is the number
of local epochs, and 7) is the learning rate.

Server executes:
=) initialize wy

for eachround ¢ =1,2,... do
m < max(C - K, 1)
=) S, « (random set of m clients)
for each client k € S, in parallel do
wy,, « ClientUpdate(k, w;)
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ClientUpdate(k, w): // Run on client k
B < (split P} into batches of size B)
for each local epoch i from 1 to £ do

for batch b € B do
w < w —nVLl(w;b)

return w to server
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Limits

 Clients must implement the same model architecture;

* Transmitting model weights and model updates implies high communication cost,
which scales up with the number of model parameters;

* In presence of non-IID data distributions, parameter-averaging aggregation
schemes perform poorly due to client model drifts.
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| Knowledge Distillation

True label hot encoded From teacher
_ S S T
L= (1 — >\)£CE(Q 7y) T /\ﬁKL(qT,CIT)
Cross-entropy loss Kullback-Leibler (KL) divergence
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| Knowledge Distillation (KD) For Fed

Overall

* |nitially, KD-based strategies, also motivated by encouraging privacy properties, have been introduced
to enable model heterogeneity and to reduce the communication cost of the process by exchanging
model outputs and/or model-agnostic intermediate representations instead of directly transferring
model parameters/model updates

For Server (server-side fusion)

* Then, a set of strategies proposed to enhance the aggregation step of FedAvg with a server-side
ensemble distillation phase to enable model heterogeneity and/or improve model fusion in presence
of heterogeneous.

For client (client model drift)

* Recently, two KD-based lines of work focused on mitigating the phenomenon of client model drift —
which makes averaging-based aggregations inefficient — either using regularization terms in clients’
objective functions or leveraging globally learned data-free generator.
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| Structure of This paper

According to the purpose KD is used for

Model-agnostic FL

—

FL algorithms that use KD to
enable model heterogeneity

_—

-

\_

Solutions that leverage
server-side ensemble
distillation on top of

~

FedAvg’s aggregation phase.

J
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Communication-efficient strategies that enable
model heterogeneity via exchanging locally-
computed statistics, model outputs and/or

model-agnostic intermediate features instead of

Non-lID data

\

FL algorithms that use KD to
mitigate the impact of data
heterogeneity on global model
performance.

4 )
Server-side

strategies that refine
FedAvg’s
aggregation with a

model parameters.
\- /
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Client-side
techniques that
locally distill global
knowledge to
directly tackle client

drift /




| Model-agnostic FL via KD

According to the purpose KD is used for

Model-agnostic FL

—

FL algorithms that use KD to
enable model heterogeneity

/

4 )

Solutions that leverage
server-side ensemble
distillation on top of

FedAvg’s aggregation phase.

\_ J
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| Server-side ensemble distillation

* FedAvg’s protocol can be enhanced to enable model heterogeneity by leveraging server-side ensemble distillation
on top of the aggregation step

The server can maintain a set of prototypical models, with each prototype representing all learners with same
architecture. After collecting updates from clients, the server firstly performs a per-prototype aggregation and then
produces soft targets for each received client model either leveraging unlabeled data or synthetically generated
examples.

Next, such soft targets are averaged and used to fine tune each aggregated model prototype, exchanging

knowledge among clients with different model architecture.

* [30] Tao Lin, Lingjing Kong, Sebastian U Stich, and Martin Jaggi. Ensemble distillation for robust model fusion in
federated learning. Advances in Neural Information Processing Systems, 33:2351-2363, 2020.

* [41] Felix Sattler, Tim Korjakow, Roman Rischke, and Wojciech Samek. Fedaux: Leveraging unlabeled auxiliary data
in federated learning. IEEE Transactions on Neural Networks and Learning Systems, 2021.
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I Ensemble distillation for robust model fusion in federated learning

NeurolPS 2020

Algorithm 3 Illustration of FedDF for heterogeneous FL systems. The K clients are indexed by k, and ny
indicates the number of data points for the k-th client. The number of communication rounds is 7, and C
controls the client participation ratio per communication round. The number of total iterations used for model
fusion is denoted as N. The distinct model prototype set P has p model prototypes, with each initialized as x{ .

1: procedure SERVER

2: initialize HashMap M: map each model prototype P to its weights x2.
3: initialize HashMap C: map each client to its model prototype.
4: initialize HashMap C: map each model prototype to the associated clients.
5: for each communicationround ¢t = 1,...,7 do
6: S; < arandom subset (C fraction) of the K clients
7: for each client £ € S, in parallel_do
8: %XF « Client-LocalUpdate(k, M [C[k]]) > detailed in Algorithm 3.
9: for each prototype P € P in parallel do
10: initialize the client set S/ with model prototype P, where S « C[P] NS,
11: initialize for model fusion xf 0 ke SP #"tpnkfcf
12: for jin{l,...,N} do
13: KD sample d, from e.g. (1) an unlabeled dataset, (2) a generator
14: use ensemble of {Xf }es, to update server student x;” ; through AVGLOGITS
15: M [P] szv Enable aggregation from heterogeneous systems
16: return M
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| Structure of This paper

According to the purpose KD is used for

Model-agnostic FL

—

FL algorithms that use KD to
enable model heterogeneity

N —
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Communication-efficient on-device machine learning: Federated

I distillation and augmentation under non-iid private data.
NIPS 2018 2nd Workshop on Machine Learning on the Phone and other Consumer Devices (MLPCD 2)
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(a) FD with 2 devices and 2 labels.
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| Structure of This paper
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| Exchanging model responses on proxy data

1. Broadcast: clients receive the current global logits/soft targets;

2. Local distillation: clients distill their local model by mimicking the received
global logits/soft-labels on a subset of the proxy dataset;

3. Local training: clients fine-tune the distilled model on local data;

4. Local prediction: clients compute their local logits/soft targets on the proxy
dataset;

5. Aggregation: the server collects the logits/soft targets and aggregates them to

produce the updated global logits/soft targets.
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Distillation-Based Semi-Supervised Federated Learning for Communication-
Efficient Collaborative Training with Non-IID Private Data
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(b) Benchmark 2: Federated Distillation [6]. (c) Proposed: Distillaion-Based Semi-
Supervised Fedetrated Learning.

(a) Benchmark 1: Federated Learning with
model parameter exchange [4].

Fig. 1. Operational structures for benchmark schemes and proposed DS-FL.
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| Structure of This paper
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Ensemble Attention Distillation for Privacy-Preserving

Federated Learning

ICCV 2021
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Figure 2. Overview of the proposed FedAD framework.
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| Server-side KD-based refinement of global model

According to the purpose KD is used for

Non-lID data

\

FL algorithms that use KD to
mitigate the impact of data
heterogeneity on global model

performance.
4 )
Server-side
strategies that refine
FedAvg’s

aggregation with a
distillation phase
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I Ensemble distillation for robust model fusion in federated learning

NeurolPS 2020

Algorithm 3 Illustration of FedDF for heterogeneous FL systems. The K clients are indexed by k, and ny
indicates the number of data points for the k-th client. The number of communication rounds is 7, and C
controls the client participation ratio per communication round. The number of total iterations used for model
fusion is denoted as N. The distinct model prototype set P has p model prototypes, with each initialized as x{ .

1: procedure SERVER

2: initialize HashMap M: map each model prototype P to its weights x2.
3: initialize HashMap C: map each client to its model prototype.
4: initialize HashMap C: map each model prototype to the associated clients.
5: for each communicationround ¢t = 1,...,7 do
6: S; < arandom subset (C fraction) of the K clients
7: for each client £ € S, in parallel_do
8: %XF « Client-LocalUpdate(k, M [C[k]]) > detailed in Algorithm 3.
9: for each prototype P € P in parallel do
10: initialize the client set S/ with model prototype P, where S « C[P] NS,
11: initialize for model fusion xf 0 ke SP #"tpnkfcf
12: for jin{l,...,N} do
13: KD sample d, from e.g. (1) an unlabeled dataset, (2) a generator
14: use ensemble of {Xf }es, to update server student x;” ; through AVGLOGITS
15: M [P] szv Enable aggregation from heterogeneous systems
16: return M
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| Local distillation of global knowledge
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| Local distillation of global knowledge
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| Local-global distillation via regularization term

* In local-global distillation, the local objective function of clients becomes a linear combination between the
cross-entropy loss and a KD-based loss that measures the discrepancy among the global model’s output (i.e.,
the teacher model’s output) and the local model’s output (i.e., the student model output) on private data,

e.g. via Kullback-Leibler divergence.

— —— KD loss

Y
Softmeax | €>— local loss
A
|

——» CEloss

softmax
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| Local distillation of global knowledge
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Learning Critically: Selective Self Distillation in Federated

Learning on Non-lID Data
IEEE Transactions on Big Data 2022
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Fig. 5: An overview of FedSSD in the heterogeneous setting.
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| Local distillation of global knowledge
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Data-Free Knowledge Distillation for Heterogeneous

Federated Learning

PMLR 2021
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Figure 1. Overview of FEDGEN: a generator G« (-|y) is learned
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