Non-Autoregressive
Decoding

Xiachong Feng

Outline

* Transformer
* The Importance of Generation Order in Language Modeling EMNLP18

* Insertion Transformer:
Flexible Sequence Generation via Insertion Operations ICML19

* Non-Monotonic Sequential Text Generation ICML19

* Insertion-based Decoding with automatically Inferred Generation
Order

* Levenshtein Transformer
* Conclusion

* Paper List

* Reference

Transformer

Transformer

Scaled Dot-Product Attention

Multi-Head Attention

Concat
> Scaled Dot-Product h
Attention
[[l &I‘
#—
Linear Linear l Linear 'l
V K Q

Output

Probatbilities
| Softmax |
| Linear |}

4

(
| Add & Norm h\

Feed
Forward
—
7 7 L Add & Norm Je=
—>(Add & Norm J Multi-Head
- Feed Attention
orward N x
- (Norm)
Add & Norm _Je=
N x I
~>{_Add & Norm J e
e Multi-Head Multi-Head
Attention Attention
| T,
_‘ J . J)
Positional A ¢ Positional
Encoding Encoding
Input Output
Embedding Embedding
Inputs Outputs
(shifted right)

Figure 1:

The Transformer - model architecture.

Scaled Dot-Product Attention

SoftMax
i
[Mask (opt.)] . QKT
Attention(Q, K, V) = softmax vV
Jd

Scale /

MatMul .
For large values of dj, the dot products grow large in
magnitude, pushing the softmax function into regions

Q K \ where it has extremely small gradients. To counteract

this effect, the dot products are scaled by %.
k

https://cips-upload.bj.bcebos.com/ssatt2019/CIPS_SSATT 2019 |oj&ZRZz [EZ5:% E4E.pdf

Example

The weather is nice today
’\‘ s&£ ;x"«‘_‘
w, I w, "™ { T i T ,_‘;
| e NGRS g
I“ | S
The weather s nice today

— X
W,y w, = softmax (SIS II.II)

The weather is nice today

The The weather nice today

https://cips-upload.bj.bcebos.com/ssatt2019/CIPS SSATT 2019 [o]E X%z [EZ5+% 4. pdf

Multi-Head Attention

{

Linear

I

Concat

i
- 1
Scaled Dot-Product h
Attention

L *" L
Linear WM Linear LH Linear Compute attentions from

different representation
((spaces.
' K Q

head; = Attention(QWiQ, Kwi, vw/)

MultiHead(Q, K,V) = Concat(heady, ..., head;)W?

https://cips-upload.bj.bcebos.com/ssatt2019/CIPS_SSATT 2019 |oj&ZRZz [EZ5:% E4E.pdf

Transformer

Output
Probabilities
Layer Normalization adjusts parameters
in each layer to a more stable distribution
and accelerates the training of the network.
Feed
Forward
Position-wide Feed-Forward Networks is r_'=/“\
applied to each position: (N s o]‘ &t o
FFN(x) = max(0,xW; + b;) W, + b, L = Multi-Head
. . . N eed Attention
While the linear transformations are the Forward T 7 Nx
same across different positions, they use \ |__%:
different parameters from layer to layer. Nisc Add & Norm
f->| Add & Norm | v
asked
Multi-Head Multi-Head
Residual connections allow to have <—— ~ : SEpntin : ALY
d
eeper models. A — it
\ J U J
Positional ® _5 @ Positional
Encoding Encoding
Position encodings make use of the Input Output
order of the sequence and they have the Embedding Embedding
same dimension as input embeddings. The T]
two can be summed to tell the neural net Inputs Outputs
that there’s an underlying sequential (shifted right)
structure.

https://cips-upload.bj.bcebos.com/ssatt2019/CIPS _SSATT 2019 [o]&E FE %z ZZFik Etz.pdf

The Importance of Generation
Order in Language Modeling

Nicolas Ford, Daniel Duckworth, Mohammad Norouzi, George E. Dahl

Google Brain
EMNLP18

Overview

* Linguistic intuition might suggest that we should first generate some
abstract representation of what we want to say and then serialize it.

* The best ordering we tried generates function words first and content
words last, which cuts against the idea of committing to the general
topic of a sentence first and only then deciding exactly how to phrase
it.

Two-pass Language Models

* Produces partially-filled sentence “templates” and then fills in missing
tokens

* Partitioning of the vocabulary into a set of first-pass and second-pass
tokens to generate sentences.

sentence common first

” all you need to do ”all you __to __if you
if you want the na- | __the __’s _._ __on __
tion s press camped _.1sto ._you __had a
on your doorstep is to [UNK] n ...,"he . ..
say you once had a in his __. [EOS]
[UNK] in 1947 , ”

he noted memorably in

his diary . [EOS]

y(@ Template:first-pass tokens + a special placeholder token
y <

y@ Second-pass tokens

Two-pass Language Models

* Two copies of the Transformer model

* Neural language model p, : The first copy just generates
the template, so it has no encoder.

* Conditional translation model p, : The second copy is a
sequence-to-sequence model that translates the template
into the complete sentence.

p(y) = ") pa(y® | y).
Sentence—>template template—>final

no encoder Seqg2Seq

Two-pass Language Models

template

(CTTTTTTTTTTTTTTTTTTrTreTT T e |
sentence common first rare first function first content first odd first
" all you need to do | "all you __to __if you e —— - need __do __ ["all you__to __if you e ww-meed __do ____ | 7 all you need .. __
if you want the na- | __the ._’s __ __on _. | __ want __ nation .. | __the__’s____onyour | want __nation __press | _.you .. the nation ’s
tion ’s press camped | __isto ._you __hada | press camped .. your | __isto_..you _...a .. | camped __ ._ doorstep | press camped on your
on your doorstep is to | [UNK]in __.,”he ... | doorstep .. _._ say .. | in_.,”he .. __inhis | _.__say ..once had .. | doorstep _. ._ say you
say you once had a in his __. [EOS] once1947 __ _.. [EOS] [UNK] . 1947 __ __ __ once had __ __ __ __ __
[UNK] in 1947 , ~” -- - noted memorably noted memorably __ __ | ” __noted __ __his __.
he noted memorably in - —diary __ [EOS] diary __ [EOS] [EOS]
his diary . [EOS]
the team announced the __ __ __that the __, _. team announced the .- __ __ that the .. team announced the team announced __
thursday that the 6- [UNK] - will __in __ | thursday .. __ 6-foot-1 ey == - will __ in | thursday .. __ 6-foot-1 - the 6-foot-1 _. __
foot-1 , [UNK] starter | __the __ __. [EOS] - .. Starter __ remain _. through the __ __ . —- [UNK] starter __ - will remain _. __
will remain in detroit - detroit through __ [EOS] remain __ detroit __ __ through the 2013 __ .
through the 2013 sea- 2013 season __ [EOS] 2013 season __ [EOS] [EOS]
son . [EOS]
scotland s next game | _.’s._.__isa__.__the_. | scotland __ next game | _.’s ____isa__against | scotland __ next game | _.’snextgame ._ __ __
is a friendly against | __at__on_.__.[EOS] | _.__friendly against . | the .. __at __on____. | __ __ friendly _. __ | __the czech republic at
the czech republic at czech republic __ ham- [EOS] czech republic __ham- | hampden on 3 march .
hampden on 3 march . pden __ 3 march __ pden __ 3 march __ | [EOS]
[EOS] [EOS] [EOS]
of course , millions of | of -, __of - _ __ __ —-course ._millions .. | of _, _of _______a .- course _. millions | of __ __ __of additional
additional homeown- | a .. __: they __ __ of | additional homeown- | __ __:they _ __of” __ | __ additional home- | __ __ __ __ big - _.
ers did makeabigmis- | ” __ __"”and __ [UNK] | ers did make __ big | _-”and . ____to____ | owners did make | they _. advantage of
take : they took ad- | __to .. __they -t __. mistake __ __ took ad- | they __ __ __. [EOS] .. big mistake .. __ | ” liar __ " and other
vantage of ” liar loans [EOS] vantage __ __ liar loans took advantage __ __ | __ deals __ buy homes
” and other [UNK] — - other __ deals __ liar loans __ __ other they couldn __ afford .
deals to buy homes buy homes __couldn __ [UNK] deals __ buy [EOS]
they couldn 't afford . afford __ [EOS] homes _. couldn 't

[EOS]

afford __ [EOS]

Table 1: Some example sentences from the dataset and their corresponding templates. The placeholder token is

indicated by “__".

Results

* |tis easier to first decide something about its syntactic structure.
* |tis preferable to delay committing to a rare token for as long as possible as all
subsequent decisions will then be conditioning on a low-probability event.

Model Train | Validation | Test

odd first 39.925 45.377 45.196
rare first 38.283 43.293 43.077
content first 38.321 42.564 42.394

_ common first _ | 36.525 | 41018 _ | 40.895
| function first | 36.126 | 40.246 | 40.085
baseline 38.668 41.888 41.721
enhanced baseline | 35.945 39.845 39.726

Table 2: The perplexities achieved by the best version of each of our models.

Insertion Transformer:
Flexible Sequence Generation
via Insertion Operations

Mitchell Stern, William Chan, Jamie Kiros, Jakob Uszkoreit
Google Brain, University of California, Berkeley
ICML19

Insertion Transformer

X : source canvas (sequence)

y : target canvas (sequence)

V: - hypothesis canvas at time t

C : content vocabulary (token vocabulary for sequences)
[: locations € [0, |y¢|]

Insertion Transformer: Flexible Sequence Generation via Insertion Operations

[three, friends, ate, together] (lunch, 3)
[three, friends, ate, lunch, together] ({(EOS), 5)

Serial generation: Parallel generation:
t Canvas Insertion t Canvas Insertions
0 1 (ate, 0) 0] (ate, 0)
1 [ate] (together, 1) 1 [ate] (friends, 0), (together, 1)
2 [ate, together] (friends, 0) 2 [friends, ate, together] (three, 0), (lunch, 2)
3 [friends, ate, together] (three, 0) 3 [three, friends, ate, lunch, together] ((EOS), 5)
4
5

p(c,l | z,9;) = InsertionTransformer(z, y;).

Insertion Transformer Model

* Full Decoder Self-Attention
* Remove causal self attention

* Slot Representations via Concatenated Outputs

* Adding special marker tokens at the beginning and end of the
decoder input to extend the sequence length by two.

* Take the resulting n + 2 vectors in the final layer and concatenate
each adjacent pair to obtain n + 1 slot representations.

Model

~

p(c,l | z,9;) = InsertionTransformer(x, 3).

e Joint content-location distribution

H ¢ R(T+1)xh matrix of slot representations

p(c,l) = softmax(flatten(HW)) I

flatten this matrix into a vector

* Joint distribution using a conditional factorization

p(e,l) = p(Dp(c|ll) = softmax(qu) % softmax(h<W)

learnable query vector [-th row of H

Contextualized Vocabulary Bias

context vector g = maXpOOl(H) g € R"
shared bias b = gV V € RhXIC|
B = repmat(b, [T+ 1, 1])
p(c,l) = softmax(HW + B)

|

Global bias

Training and Loss Functions

* Left-to-Right
* Example : (x, y)
* Sample a length k~uniform(|0, |y|])
* Create a new data point ((x, ¥ = (V1, ..., Vi)), Vk+1)
* Loss : classification loss (negative log-likelihood)
* Note : only concerns about the last position to insert

loss(z,9) = —log p(Yr41,k | x,7)

Balanced Binary Tree

e Parallelism

|]
- 2
YANVANVAN

[A,B,C,D,E,F,G

Balanced Binary Tree

* Example : (x,y)
e Sample a length k~uniform(|O0, |y|])

e Sample a random subsequence of y of length k: §

1. Shuffley
2. Extract the first k
3. Reorder

}-2 é - © ! i K
A - - A t ! WJ ;'"‘

Soft binary tree loss

utg I wy (3) = exp(—d;(i)/7)

di(i) = 5

\ span of tokens from the target
output yet to be produced

(=0 I=1 [=2 | = =4

slot-loss(x, ¢, 1) Z log p(yi, 1 | z,9) 4|_u_)l_(7)_i loss(z, 7))

1=1

S exp(—di(@)/T)

Uniform

exp(—di(i)/7)
=i, Xp(=di(i)/7)

wi(t) = . T — O

1 i)
Fp— | > —logp(yi,l | z,9),

Z:’il

slot-loss(z, 4, 1) =

Balanced binary tree and uniform losses

A B C DEF GH I J K L

M Uniform Loss 0 Balanced Binary Tree Loss

L L
M N O

Figure 2. A visualization of the weighting of the per-token negative
log-likelihoods 1n the balanced binary tree and uniform losses. The

balanced binary tree loss strongly incentivizes the generation of
the center word or center words within each slot.

Greedy Decoding

* Choose the action with the highest probability
(Ct,lt) = argmaxp(c,l | z,Gt).
c,l

* sequence finalization
 until an end-of-sequence token gets selected

* slot finalization

* restrict the argmax to locations whose maximum-probability
decision is not end-of-slot

e Until the model predicts an end-of-slot token for every location.

Parallel Decoding

* For each location

p(c|l) + ¢, = argmaxp(c | I, z,§t).
/ C
p(C | l) — p(C, l)/p(l) — p(C,l)/ Zc’ p(c’,l)

joint distribution p(c, 1) = p(l)p(c|l) = softmax(Hgq) x softmax(h; W)

p(c,l) = softmax(flatten(HW)). factorization

e slot finalization

Non-Monotonic Sequential
Text Generation

Sean Welleck , Kiante” Brantley, Hal Daume’ Ill, Kyunghyun Cho
New York University, University of Maryland, College Park
Microsoft Research, Facebook Al Research
CIFAR Azrieli Global Scholar

ICML19

Overview

* Recursively generating words to its left and then words to its right,
vielding a binary tree.

* Learning is framed as imitation learning, including a coaching method
which moves from imitating an oracle to reinforcing the policy’s own
preferences

1.—~14

)L

2141) 55\3 }{ @

Level-order In-order

Imitation Learning

Imitation Learning with Recurrent Neural Networks
Learning to Search Better than Your Teacher ICML15
https://zhuanlan.zhihu.com/p/25688750

https://blog.csdn.net/WASEFADG/article/details/83651126

https://www.quora.com/What-is-imitation-learning

https://zhuanlan.zhihu.com/p/25688750
https://blog.csdn.net/WASEFADG/article/details/83651126
https://www.quora.com/What-is-imitation-learning

Notation

e Vocabulary V =V U {< end >}

* State space V*

e State s € S corresponds to a sequence of tokens from V

* Init state: empty sequence <>

* End state: < end >

* Action a : select an element from vocab and append to the state
* 7(t): maps from in-order to level order

* Policy m(als)

Challenge

* The sequences Y alone only tell us what the final output sequences of
words should be, but not what tree(s) should be used to get there.

Imitation Learning

The first step, an oracle policy’s action is to produce any word w that appears anywhere in Y.
All words to the left of win Y are generated recursively on the left (following the same

procedure), and all words to the right of w in Y are generated recursively on the right.

The oracle is non-deterministic (many “correct” actions are available at any given time), we

inform this oracle policy with the current learned policy, encouraging it to favor actions that are

preferred by the current policy.

Yo (a, b, ¢, d)
~ T
Y) (a) Y> (c, d)
* [' HE |

Y3 (<end>) / N\ / N

/ \ / \,
{<end> X <end>/>
b N\

\ Ye (<end>)
<en
R ai\VAVAS

d>\/ %
./ = I

Background: Learning to Search

xe X

—>O—>@—> yey l(y)=0.0

YyEeY, I(ye)=0.2

>(:)> yey Uy)=0.8

\ 18-2
X . + O
rollin v

L J

 © Y

cC -~

©> rollout
©

Learning to Search Better than Your Teacher ICML15

Loss

*3E
e draw states s according to the state distribution induced by 7'"
* compute cost-to-go under %%, for all possible actions a at that
state.
e 2 E
* running i for t-many steps
e 1E
* for one instance

Oy ~DEn 2y |41 Espmat . [C(m5 7, 5¢)]
o P o

Cost Measurement

* when dealing with recurrent neural network policies using a cost
function more analogous to a cross-entropy loss can be preferred

* use a KL-divergence type loss, measuring the difference between the
action distribution produced by m and the action distribution
preferred by mo%t.

* first sampling one training sequence, running the roll-in policy for t
steps, and computing the KL divergence at that state
using * (reference or oracle)as m°%t. Learning corresponds to
minimizing this KL divergence iteratively with respect to the
parameters of .
C(m; ™, 5) = Dxr (7 (:|s) || 7 (-|s))

— Z " (als) log 7(als) + const.
acV

Roll-In Policies

* In most formal analyses, the roll-in policy is a stochastic mixture of
the learned policy ™ and the oracle policy *

* Experimentally, it has often been found that simply using the oracle’s
state distribution is optimal

roll-out —
Reference Mixture Learned
4 roll-in
Reference Inconsistent
Learned Not locally opt. Good | RL

Learning to Search Better than Your Teacher ICML15

Oracle Policies

I
Y, (a) Y, (c, d) |
zzi_ (1 if « = (end) and V; = ()
* .
T (a]sy) = < if a € Y,
Y; (<end>) LIANEIAN 77\ Ys (<end>) (a|st) Pa .t

{<end> X <end>)

e Uniform Oracle.p, = 1/n

* Coaching Oracle
e preferring actions that are preferred by the current parameterized policy
71-:0110}1i11g

* Annealed Coaching Oracle(fs from 1 to 0)

Wlelncalcd(a"S) - ﬁW:niform((I'IS) T (1 o /3)W:()11Cllillg(a"’g)

((1’|S) X W:niform(a’|s) ’/'Z'((L'S)

Word Reordering Examples

Figure 8. Word Reordering Examples. The columns show policies trained with 7 ishes Taniforms a0d Tapneaied» TE€SpeCtively.

Actusl how cool | i have never been outside of ohio but i would like to
Predicted: cool ! i Like to live outside but i would have never been of ohio

Gen, Order: cool ! i like to live outside but i would have never been of ohio

live
\
outside_

\
but

Actual: that is cool ! i love horror movies as well
Predicted: that is cool ! i love horror movies as well

Gen. Ord that is cool ! i love horror movies as well
that
\
is_
cool
\
!
\
i
\
love__
\
horror__
movies

as

well

Actual how cool | i have never been outside of ohio but i would like to
Predicted: how cool | i have never but i would like been to outside of ohio
Gen, Order: ohio how i cool to ! have outside been of never would but like i
ohio
how
\
—
/ \
cool to__
\ / \
have outside
\ \
been of
never
—would_
/ \
but like
\
i

Actual: that is cool ! i love horror movies as well !
Predicted: that is cool ! i love horror movies as well
Gen. Order: that horror is movies love ! ! as cool i well
that

\
horror__

movies

Actual how cool | 1 have never been outside of ohio but i would like to

Predicted: how cool | i would Llike to but i have never been outside of ohio

Gen. Order cool how but ! never 1 i been like have outside would to of ohio
cool
/ \
row but
\
' never_
\ p \
- —— i been__
ke have outside
would to of_
ohio
Actual: that is cool ! i love horror movies as well !
Predicted: that is cool ! i love horror movies as well
Gen. Order: ! that ! is i cool love as horror well movies
'
/ \
that !
\ /
is_ i_
\ \
cool love
\
as_
/ \
horror__ well
\
movies

Insertion-based Decoding
with automatically Inferred
Generation Order

JiataoGu, QiLiu, KyunghyunCho

Facebook Al Research
New York University

Motivation

* L2R is not necessarily the optimal option for generating sequences.

* For instance, people sometimes tend to think of central phrases first
before building up a whole sentence.

(o] [2] (] ¥ . T
<S> </S> dream : O——— insert to right :
O\—/ : @ —— insert to left :
(o] 2]] b e
<S> </S> dream I
o
(o] (<] (2]] [2]
<S> </S> dream‘\\j—’////a
[o] [s] [«] [] [2] [2]
<S> </S> dream I a have

<S> I have a dream </S>

Orders as Latent Variables

* P; is the set of all the permutations of (1, ...,T)
* Tl — (Zz,Z3, "'ZT'ZT-I-l) (& PT

* Vo = {2, 22), o, V141, 2741)}, (Y7, 27) represents the t —
th generated token and its absolute position

* Two special tokens
° (yO'ZO) — (< S >: O)\ (lezl) — (</S >’T + 1)

* Object
’y|113 Z Po y7r|m

po(Yx|T) = po(yri2|yo.T+1, 20741, Trrr). YT+2 =< eod >
T

Hp()(yH—la 214+1|Yo:t, 20:t, T1:77)
t=1

Relative Representation of Positions

. rit: the relative-position representations of token i at decode step t

b (left)
! (middle)
¢ (right)

* 1/ is a vector
*Value:0,1,-1 ;= {

« Matrix Rt = [r§,rf, ..., r}] shows the relative-position
representations of all the words in the seauence.

t

* Mapped back to the absolute position . —) " max(0,r} ;)
j=0

* Update ! 1

Ti41.0
t4+1 R! :
R —
.
t+1,t
i1 |
—Tir10 0 T Tt 0

Insertion-based Decoding

* Givenyy.; and 1y.¢
* Predict y;,1 and 13,4
* Note : only concerns about the y, which has been selected

s = —1ify;,qisontheleftof y,,and s = 1 otherwise.
(. k
S = ,
Tt+1,5 = < . 9 V] S [Ovt]
Tkj J # k

Insertion-based Decoding

Algorithm 1 Insertion-based Decoding

Initialize: y = ((s), (/s)), R = [_01 (l)} t=1

repeat
Predict the next word ;.1 based on y, R.
if ;.1 is (eod) then
break
end if
Choose an existing word y;. € y;
Choose the left or right (s) of ¥, to insert;
Obtain the next position 7,1 with &, s (Eq. (6)).
Update R by appending ;41 (Eq. (5)).
Update y by appending ;41
Update t =t + 1
until Reach the maximum length
Map back to absolute positions 7 (Eq. (4))
Reordery: y.. = y; Vz; € w,i € [0,¢]

Transformer-InDIGO

* Relative position-based self-attention

b —

\/dmodel

A - RSdeOdel

Transformer-InDIGO

* Word & Position Prediction H = (ho,..., h)

p(yt+1, Tt41 |H) :P(yt+1 |H) ‘ p(rt+1 |yt—|—17 H)

/ ppOinter(k‘yt+17H) —

T T
Pword(y| H) = softmax ((h;I—F) ' WT) softmax ((h;E I W[yt—|—1:) ' [[I:{,Tg])

kt+1 S [07 2t + 1]

Transformer-InDIGO

Word Prediction

W

Position Prediction

(a)

.

Transformer-Decoder

[:’... Self-attention

Relative Positions

Causal

o EE

</S> dream I '>

a

E key for insert at right key for insert at left

[l:]o D-1 B

|

(b)

<S> I have a dream </S>

<S> </S> dream I a have

(c)

Figure 2: The overall framework of the proposed Transformer-InDIGO which includes (a) the word &
position prediction module; (b) the one step decoding with position updating; (¢) final decoding output by

reordering.

Learning

e This is intractable since we need to enumerate all of the
T! permutations of tokens. »(lz) =) po(yxlz)

wePr

* Maximize the evidence lower-bound (ELBO) of the original objective
by introducing an approximate posterior distribution of generation
orders q(m|x,y), which provides the probabilities of latent generation
orders based on the ground-truth sequences x and y:

Leigo = E logpye(yx|x) + H(q)

mw~q

T+1
= E 108[)9 Jz‘+1|J0t "’oullT')
T2 T+1’\’q
t=1 Word Prcdlctlon Loss

=1

T
-+ Zlogpg rt—{—l‘yOt—H T0:t, 21: T’)> +H(Q)

Position Predlctlon Loss

Searched Adaptive Order (SAO)

* beam-search in the space of all the permutations of the target
sequence

* Sub-sequence y(()bt) c B

* Left words : ¢ € y\y((fz
» corresponding position 7’
* select top-B sub-sequences as the new set B for the next step.

1
Lsao =5 > log py(y=|)

e
1/B mwekB
q(mlz,y) = {O otherwise

Levenshtein Transformer

Jiatao Gu, Changhan Wang, and Jake Zhao (Junbo)

Facebook Al Research
New York University
Tigerobo Inc

Levenshtein Distance

4 =

B w N e

Levenshtein Distance(Saturday, Sundays)

Saturday - Sturday // delete the first a
Sturday - Surday // delete the first t
Surday - Sunday // replace r with n
Sunday - Sundays // add s at the end

Overview

* Humans can revise, replace, revoke or delete any part of their
generated text.

* Atomic operations : insertion and deletion

* Not only generation but also sequence refinement allowing dynamic
length changes.

 Partially autoregressive model

Problem Formulation

* Markov Decision Process (MDP) (V, A,E, R, yo)

Edit action a € A: {insert,delete}

N

Agent Environment
Policy m:y —» P(A) &
T

y € VNmax: {from scratch, uncompleted seq}, y, € y init seq

Reward function : R(y) = —D(y,y")

Actions

k+1

— S(yk, ak 1)
/ \

y’“ — (yl, Uiy sy yn) a € A:{insert, delete}

T T

<s> </s>

Y

Deletion

« 79 (d|i,) makes a binary decision which is 1 (delete this token) or
0 (keep it)

» Avoid sequence boundary being broken 7%(0|1, y) = 7%!(0|n, y)

Insertion

* placeholder prediction and token prediction
* All locations (y;,Y;+1) In Y

o P (pli, y) the possibi

» mK(¢|3,y) for everyp
placeholders with actua

ity of adding one or several placeholders

aceholder predicted as above, replaces the
tokens in the vocabulary

Policy combination

* delete tokens — insert placeholders - replace placeholders with new
tokens

 parallelize the computation within each sub-tasks.

1 Pn—
al— {do’oo n,po’ooo’pn—l;tO’-nnth t 1
W o’ N

i e

d 4 t

n(aly) = || »*(dilé,n) - [™™ (pili, o) - [[7 (tili, o)

d;ed PiEP t; et

_J

Classifiers (Placeholder
Classifier

Deletion

Classifier

h1| |h2| |h
SRR e 2%

(C

(

Transformer Block_2

(C

Transformer Block_1

e

E?::g:ddings BOS x2 x3 PLH x5 EOS
+ + + + + +

Position

Embeddings | 1 2 3 4 5 6

Levenshtein Transformer

Fill-in Tokens
§<s'>' V[PLH] cat [PLH] [PLH] [FLH']‘ mat </s>
| L I) I (0]
nsert =)
Placeholders f ? ?
—»(Levenshtein Transformer

Delete Tokens

tTrrt

i<s> cat mat </s>|

X/

ot

Levenshtein Transformer

IR

'<s> cat sit mat </s>

Figure 1: The overall framework of the decoder of the proposed Levenshtein Transformer. We
show how the same architecture can be applied for three different tasks with specific classifiers. For
simplicity, the attention between the encoder outputs is omitted within each Transformer-Block.

Levenshtein Transformer

* Decoder output : (hy, hq,... hy,), passed to three policy classifiers

1. Deletion Classifier: scans over the input tokens (except for the
boundaries) and predict “deleted” (0) or “kept” (1) for each token

position

73 (d|i, y) = softmax (h; - AT) i =l e o= 1

2. Placeholder Classifier: predicts the number of tokens to be inserted
at every consecutive position pairs

plh(p|z, y) = softmax (concat(h;,hi11)-B'), i=0,...n—1 B € REmaux+1)x(dnue)

3. Token Classifier: fill in tokens replacing all the placeholders.
me° (t|i,y) = softmax (h; - C'), Vy; = <PLH>

Dual-policy Learning

Roll-in policy

]EydelNdﬁ I Z log Trgel (d;k |Z7 ydel) +]E'yinsNd [

= < del
d” ~T d’;Ed*

N |

Roll-in policy

Tins
* * *
p Lt~

. |

Z logm

| p; €EP”

1h . :
g (p: |Z7 yinS) +Z log ﬂ'gOk(t: |Z7 yi,ns)
ity et*

~
eletion Objective

Expert policy

suggested actions

l

Expert policy

~
Insertion Objective

RND
« T

==)y, ---------- » Learn to Insert <---------- y*
Apply Deletion//"/ p
R I I e P I d i /” 7TO Apply Insertion
[] % x
oli-In FOIICY o l
0— 1" *
y = 'y --------- » Learn to Delete <--------- y

. Figure 2: The data-flow of learning.
* Learning to Delete

mixture factor any sequence ready to insert tokens

5 J o .
= =1y~ if u< a else 8(5(y',p*),ﬂ, p* ~ 7t~ my}
f f | v ’ .

o . o _ obtained by sampling instead of
initial input u~uniform[0,1] output by applying insertion

doing argmax
* Learning to Insert
o = {E(W0,d7), d' vt i u<felse £(y"d), dmn™?)

deletion output u~uniform|0,1] random word dropping sequence of the round-truth

Expert Policy

 Oracle:

Levenshtein distance

a* = argmin D(y*, E(y, a))

e Teacher Model:

* first train an autoregressive teacher model using the same
datasets and then replace the ground-truth sequence y* by the
beam-search result of this teacher-model, y4~&

Conclusion

Parallel generation:

t Canvas Insertions

0 [(ate,0)

1 [ate] (friends, 0), (together, 1)
2 [friends, ate, together] (three, 0), (lunch, 2)

3 [three, friends, ate, lunch, together] ((EOS), 5)

Insertion transformer

o o
<S> </S> dream 10"l o gt |
: @— insert to left E

] =] =] GJ emsaumarwangl

<S> </S> dream I
o

[e] N N Gd =]
<S> </S> dream I a

o] =]] GJ =] =]
<S> </s> dream I O\a_l/have
<S> I have a dream </S>

InDIGO

Non-

Monotonic

<s> a cat sat on the mat </s>

l(Transformer Block_2)I
'

Transformer Block_1 '

m;;ﬁ H’é‘%ﬁ""

£ (1] (21 [[4] (€1 (2]

(K, SSS. sat . on te !

4
Fill-in Tokens I

I f

<s> [PLH] cat [PLH] [PLH] [PLH] mat </s>|

' (1 @ ©
nsert
Placeholders f f ?
——f Levenshtein Transformer

<s> cat mat </s>

Delete Tokens X/
t ¢t ¢
Levenshtein Transformer

P11]

j<s> cat sit mat </s>!

Levenshtein

Paper List

Paper
Levenshtein Transformer
Insertion-based Decoding with automatically Inferred Generation Order
KERMIT: Generative Insertion-Based Modeling for Sequences
Non-Monotonic Sequential Text Generation
Insertion Transformer: Flexible Sequence Generation via Insertion Operations
Sequence Generation: From Both Sides to the Middle
Correct-and-Memorize:Learning to Translate from Interactive Revisions
Non-Autoregressive Neural Machine Translation

The Importance of Generation Order in Language Modeling

Conference

ICML19
ICML19
IJCAIN9
IJCAIN9
ICLR18

EMNLP18

Reference

« BN | T AEBAR | ETIRAFMERAFI A K TTE
https://zhuanlan.zhihu.com/p/73417154

* https://cips-upload.bj.bcebos.com/ssatt2019/CIPS_SSATT 2019 [g]&
ARG _EHEMEE_EX . pdf

https://zhuanlan.zhihu.com/p/73417154

Thanks!

