ACL2020 Summarization

Xiachong Feng 2020-6-16

Overview

Track	Submissions	Accepted	% Accepted
Summarization	115	30	26.1

https://acl2020.org/blog/general-conference-statistics/

Overview-ACL20

Overview-All

Topics

- Factuality (6)
- Graph-based Methods (2)
- Opinion Summarization (2)
- Dataset (2)
- Others

Factuality

Factuality-Good Analysis (1)

• On Faithfulness and Factuality in Abstractive Summarization

Input Document

勒布朗·詹姆斯的外号是"小皇帝",湖人队的科比·布莱恩特的外号是"黑曼巴"。

Summary 1 :	勒布朗•詹姆斯的外号是"黑曼巴"	Intrinsic	
Summary 2 :	湖人队的勒布朗·詹姆斯	hallucinations	Factual
Summary 3 :	科比·布莱恩特获得五次NBA总冠军	Extrinsic	Hallucinations
Summary 4 :	勒布朗 · 詹姆斯原先先效力于魔术队	hallucinations	
Summary 5 : 3	勒布朗•詹姆斯的外号是"小皇帝"		

FaithfulnessSummary 5FactualitySummary 2,3,5

Factuality-Good Analysis (1)

Modela	Hallucinated			Faith	. Foot
widdels	Ι	Ε	$\mathbf{I} \cup \mathbf{E}$	raitii.	+racı.
PtGen	19.9	63.3	75.3	24.7	27.3
TCONVS2S	17.7	71.5	78.5	21.5	26.9
TRANS2S	19.1	68.1	79.3	20.7	25.3
BERTS2S	16.9	64.1	73.1	26.9	34.7
Gold	7.4	73.1	76.9	23.1	

- 1. intrinsic and extrinsic hallucinations happen frequently
- 2. the majority of hallucinations are extrinsic, 90% of extrinsic hallucinations were erroneous.
- 3. models initialized with pretrained parameters perform best both on automatic metrics and human judgments of faithfulness/factuality. they have the highest percentage of extrinsic hallucinations that are factual

Factuality-Good Analysis (2)

- FEQA: A Question Answering Evaluation Framework for Faithfulness Assessment in Abstractive Summarization
- We find that current models exhibit a trade-off between abstractiveness and faithfulness: outputs with less word overlap with the source document are more likely to be unfaithful.

- Improving Truthfulness of Headline Generation
- Focus: headline generation
- Drawbacks of dataset:
 - They assumed the lead (first) sentence of an article as a source document and its corresponding headline as a target output.
- Reason:
 - untruthful supervision data used for training the model.

- Mehod
 - 1. Human annotate each doc-summary pair a entailment label
 - 2. Use RoBERTa to train a entailment model
 - 3. For each instance in the dataset
 - 4. Filter out non-entail instances
 - 5. Use clean data with self-training to train the model
- Reslut
 - headline generation model trained on filtered supervision data shows no clear difference in ROUGE scores but remarkable improvements in automatic and manual evaluations of the generated headlines.

• Knowledge Graph-Augmented Abstractive Summarization with Semantic-Driven Cloze Reward

- Question : unfaithful content
- Method :

coreference resolution && open information extraction

• Model : ASGARD

Figure 2: Our ASGARD framework with documentlevel graph encoding. Summary is generated by attending to both the graph and the input document.

- Self-critical Policy Gradient
- Reward :
 - ROUGE
 - Multiple Choice Cloze Reward.

• Salient Context:

- greedy search to select the best combination of sentences that maximizes ROUGE2 F1 with reference to human summary.
- further include a sentence in the salient context if it has a ROUGE-L recall greater than 0.6 when compared with any sentence in the reference.

• Question Construction.

- argument pair questions
- predicate questions
- QA model
 - RoBERTa
 - concatenate the <u>salient context</u>, the <u>question</u>, and each of the <u>four candidate answers</u>
 - Predict : [CLS] representation

Reference Summary:

Federal Reserve increases interest rates.

IE Output:

(Federal Reserve, increases, interest rates)

Salient Context:

Federal Reserve *signals* positivity about the market. Fed increases benchmark interest rate again this May. American economy *keeps* the high growth rate. Jerome H. Powell *discussed* potential risks.

IE Outputs:

- 1. (Federal Reserve, signals, positivity)
- 2. \langle **American economy**, *keeps*, the high growth rate \rangle
- 3. (Jerome H. Powell, discussed, potential risks)

₩

Multiple Choice Cloze Questions:

Argument Pair Question: _____ increases _____.

A. Federal Reserve, interest rates (✓)

B. interest rates, Federal Reserve (swapping args in A)

C. American economy, interest rates (replacing arg using triple 2)

D. Federal Reserve, potential risks (replacing arg using triple 3)

Predicate Question: Federal Reserve _____ interest rates. A. increases (✓) B. signals C. keeps D. discussed

Optimizing the Factual Correctness of a Summary: A Study of Summarizing Radiology Reports

Figure 2: Our proposed training strategy. Compared to existing work which relies only on a ROUGE reward r_R , we add a factual correctness reward r_C which is enabled by a fact extractor. The summarization model is updated via RL, using a combination of the NLL loss, a ROUGE-based loss and a factual correctness-based loss. For simplicity we only show a subset of the clinical variables in the fact vectors v and \hat{v} .

Factuality-Evaluation

Asking and Answering Questions to Evaluate the Factual Consistency of Summaries

Factuality Papers

		Boosting Factual Correctness of Abstractive	
Fact-based Content Weighting for Evaluating	ACL20	Summarization with Knowledge Graph	
Abstractive Summarisation		Ranking Generated Summaries by Correctness : An	
On Faithfulness and Factuality in Abstractive Summarization	ACL20	Interesting but Challenging Application for Natural Language Inference	ACL19
Improving Truthfulness of Headline Generation	ACL20	Evaluating the Factual Consistency of Abstractive Text	
Knowledge Graph-Augmented Abstractive	ACL20	Summarization	
Summarization with Semantic-Driven Cloze Reward		Assessing The Factual Accuracy of Generated Text	KDD19
FEQA : A Question Answering Evaluation Framework for Faithfulness Assessment in Abstractive Summarization	ACL20	Faithful to the Original: Fact Aware Neural Abstractive Summarization	AAAI18
Optimizing the Factual Correctness of a Summary: A Study of Summarizing Radiology Reports	ACL20	Ensure the Correctness of the Summary : Incorporate Entailment Knowledge into Abstractive Sentence	COLING18
		Summarization	
Asking and Answering Questions to Evaluate the Factual Consistency of Summaries	ACL20	Mind The Facts: Knowledge-Boosted Coherent Abstractive Text Summarization	
Asking and Answering Questions to Evaluate the Factual Consistency of Summaries		Mind The Facts: Knowledge-Boosted Coherent Abstractive Text Summarization	

事实感知的生成式文本摘要 <u>https://mp.weixin.qq.com/s/Aye9FBwG-v2JO2MLoEjo0g</u>

Graph-Based

Heterogeneous Graph Neural Networks

 Heterogeneous Graph Neural Networks for Extractive Document Summarization

Multi-Document Summarization

- Leveraging Graph to Improve Abstractive Multi-Document Summarization
- Graph Construction
 - **Similarity graph :** tf-idf cosine similarities between paragraphs
 - **Topic graph :** topic relations between paragraphs. The edge weights are cosine similarities between the topic distributions of the paragraphs.
 - **Discourse graph :** discourse markers (e.g. however, moreover), co-reference and entity links

Multi-Document Summarization

Opinion Summarization

Opinion Summarization

• Given

- A set of reviews about a product (e.g., a movie or business).
- Output
 - Summary
- Challenge
 - Training data is not available and cannot be easily sourced

Summary	Summary This restaurant is a hidden gem in Toront The food is delicious, and the service is in peccable. Highly recommend for anyon who likes French bistro.	
Reviews	We got the steak frites and the chicken frites both of which were very good Great service I really love this place Côte de Boeuf A Jewel in the big city French jewel of Spadina and Adelaide , Jules They are super accommodating moules and frites are delicious Food came with tons of greens and fries along with my main course , thumbs uppp Chef has a very cool and fun attitude Great little French Bistro spot Go if you want French bistro food classics Great place the steak frites and it was amaz- ing Best Steak Frites in Downtown Toronto Favourite french spot in the city crème brule for dessert	

Opinion Summarization (1)

• **OPINIONDIGEST: A Simple Framework for Opinion Summarization** ACL Short

Figure 1: Overview of the OPINIONDIGEST framework.

Opinion Summarization (2)

- Unsupervised Opinion Summarization with Noising and Denoising
- Motivation: denoising can be seen as removing diverging information.
- Method:
 - Sample a review
 - Noising
 - Denoising

Opinion Summarization (2)

Figure 1: Synthetic dataset creation. Given a sampled candidate summary, we add noise using two methods: (a) segment noising performs token- and chunk-level alterations, and (b) document noising replaces the text with a semantically similar review.

Segment Noising

- Token-level
 - replace words
- Chunk level
 - parse chunks for current review *a*
 - choose another review, parse chunks b
 - use *b* as template
 - generate a noise version of a
- Document Noising
 - choose N similar reviews

Dataset

Dataset

ID	Paper	Desp	Highlight
1	A Large-Scale Multi-Document Summarization Dataset from the Wikipedia Current Events Portal	多文档 新闻领域	10,200 clusters with one human- written summary and 235 articles per cluster on average.

Dataset

ID	Paper	Desp	Highlight
2	MATINF: A Jointly Labeled Large-Scale Dataset for Classification, Question Answering and Summarization	文摘、问答、分类	Multi-task

Figure 1: An example entry from MATINF.

Others

Others

- 1. Extractive Summarization as Text Matching
- 2. Discourse-Aware Neural Extractive Text Summarization
- 3. Exploring Content Selection in Summarization of Novel Chapters
- 4. Examining the State-of-the-Art in News Timeline Summarization
- 5. From Arguments to Key Points: Towards Automatic Argument Summarization
- 6. Storytelling with Dialogue: A Critical Role Dungeons and Dragons Dataset
- 7. Facet-Aware Evaluation for Extractive Summarization
- 8. SUPERT- Towards New Frontiers in Unsupervised Evaluation Metrics for Multi-Document Summarization
- 1. Jointly Learning to Align and Summarize for Neural Cross-Lingual Summarization
- 2. Attend, Translate and Summarize: An Efficient Method for Neural Cross-Lingual Summarization
- 3. Multi-Granularity Interaction Network for Extractive and Abstractive Multi-Document Summarization
- 4. The Summary Loop: Learning to Write Abstractive Summaries Without Examples
- 5. Fact-based Content Weighting for Evaluating Abstractive Summarisation
- 6. Self-Attention Guided Copy Mechanism for Abstractive Summarization
- 7. Understanding Points of Correspondence between Sentences for Abstractive Summarization

Conclusion

- 1. 🔶 🔶 🔶 HOT : Factuality
- 2. Abstractive Papers > Extractive Papers
- 3. Cross-Lingual Summarization
- 4. Graph Neural Networks
- 5. **Dataset Papers (Compared with ACL19)**
- 6. Unsupervised Methods (Opinion Summarization)

Thanks!