Contrastive Learning with Adversarial Perturbations for Conditional Text Generation

Seanie Lee*, Dong Bok Lee*, Sung Ju Hwang

ICLR 2021 (4 6 5 6)

Reporter: Xiachong Feng

Authors

Seanie Lee

Dong Bok Lee

Sung Ju Hwang

Background

Problem: Exposure Bias

- Train: teacher forcing
 - Input ground truth label.
- Test:
 - Input previous generated words.

Prior Works to Tackle the Exposure Bias

```
# Probabilities indicating whether to use ground truth labels
instead of previous decoded tokens
use_ground_truth = get_cuda((torch.rand(len(enc_out)) >
0.25)).long()
# Select decoder input based on use_ground_truth probabilities
x_t = use_ground_truth * dec_batch[:, t] + (1 - use_ground_truth)
* x_t
# Decoder input
x_t = self.model.embeds(x_t)
```


Scheduled Sampling

Reinforcement Learning

GAN

How about Reinforce and GAN?

Overview

Overview

Contrastive Learning

Conditional Text Generation

$$\mathbf{x}^{(i)} = (x_1^{(i)}, \dots, x_L^{(i)}) \longrightarrow \mathbf{y}^{(i)} = (y_1^{(i)}, \dots, y_T^{(i)})$$

$$\mathcal{L}_{MLE}(\theta) = \sum_{i=1}^{N} \log p_{\theta}(\mathbf{y}^{(i)}|\mathbf{x}^{(i)})$$

$$p_{\theta}(y_{1}^{(i)}, \dots, y_{T}^{(i)}|\mathbf{x}^{(i)}) = \prod_{t=1}^{T} p_{\theta}(y_{t}^{(i)}|\mathbf{y}_{< t}^{(i)}, \mathbf{x}^{(i)})$$

$$p_{\theta}(y_{t}^{(i)}|\mathbf{y}_{< t}^{(i)}, \mathbf{x}^{(i)}) = \operatorname{softmax}(\mathbf{W}\mathbf{h}_{t}^{(i)} + \mathbf{b})$$

$$\mathbf{h}_{t}^{(i)} = g(y_{t-1}^{(i)}, \mathbf{M}^{(i)}; \theta), \quad \mathbf{M}^{(i)} = f(\mathbf{x}^{(i)}; \theta)$$
Decoder
Encoder
$$\mathbf{M}^{(i)} = [\mathbf{m}_{1}^{(i)} \cdots \mathbf{m}_{L}^{(i)}] \in \mathbb{R}^{d \times L}$$

Simple Contrastive Learning Framework

- select the negative pairs as a random non-target output sequence from the same batch.
- maximize the similarity between the pair of source and target sequence, while minimizing the similarity between the negative pairs

$$\mathcal{L}_{cont}(\theta) = \sum_{i=1}^{N} \log \frac{\exp(\operatorname{sim}(\mathbf{z}_{\mathbf{x}}^{(i)}, \mathbf{z}_{\mathbf{y}}^{(i)})/\tau)}{\sum_{\mathbf{z}_{\mathbf{y}}^{(j)} \in S} \exp(\operatorname{sim}(\mathbf{z}_{\mathbf{x}}^{(i)}, \mathbf{z}_{\mathbf{y}}^{(j)})/\tau)}$$

$$\underline{\mathbf{z}_{\mathbf{x}}^{(i)} = \xi(\mathbf{M}^{(i)}; \theta), \ \underline{\mathbf{z}_{\mathbf{y}}^{(i)} = \xi(\mathbf{H}^{(i)}; \theta)}}$$

$$\xi([\mathbf{v}_{1} \cdots \mathbf{v}_{T}]; \theta) \coloneqq \operatorname{AvgPool}([\mathbf{u}_{1} \cdots \mathbf{u}_{T}]), \text{ where } \mathbf{u}_{t} = \operatorname{ReLU}(\mathbf{W}^{(1)}\mathbf{v}_{t} + \mathbf{b}^{(1)})$$

Problem

 large portion of positive-negative pairs can be easily discriminated without any training

(b) Randomly Sampled Negative Example

Contrastive Learning with Adversarial Perturbations for Seq2Seq

Method

- **1** Semantic space ↓
- ② Embedding space↑

Imposter / Distant-Target Generation with perturbation

13

1 Semantic space ↑

② Embedding space ↓

Generation of Imposters

$$\boldsymbol{\delta}^{(i)} = \underset{\boldsymbol{\delta}, ||\boldsymbol{\delta}||_2 \leq \epsilon}{\arg\min} \log p_{\theta}(\mathbf{y}^{(i)}|\mathbf{x}^{(i)}; \mathbf{H}^{(i)} + \boldsymbol{\delta})$$

Small perturbation

$$\mathbf{\tilde{H}}^{(i)} = \mathbf{H}^{(i)} - \epsilon \frac{\mathbf{g}}{||\mathbf{g}||_2}$$
, where $\mathbf{g} = \nabla_{\mathbf{H}^{(i)}} \log p_{\theta}(\mathbf{y}^{(i)}|\mathbf{x}^{(i)})$

$$\mathcal{L}_{cont-neg}(\theta) = \sum_{i=1}^{N} \log \frac{\exp(\operatorname{sim}(\mathbf{z}_{\mathbf{x}}^{(i)}, \mathbf{z}_{\mathbf{y}}^{(i)})/\tau)}{\sum_{\mathbf{z}_{\mathbf{y}}^{(k)} \in S \cup \{\tilde{\mathbf{z}}_{\mathbf{y}}^{(i)}\}} \exp(\operatorname{sim}(\mathbf{z}_{\mathbf{x}}^{(i)}, \mathbf{z}_{\mathbf{y}}^{(k)})/\tau)}, \text{ where } \tilde{\mathbf{z}}_{\mathbf{y}}^{(i)} = \xi(\tilde{\mathbf{H}}^{(i)}; \theta)$$

Generation of Distant-Targets © Semantic space 1 Semantic space 2 Semantic space 3 Semantic

$$\mathcal{L}_{KL}(\theta) = \sum_{i=1}^{N} \sum_{t=1}^{T} D_{KL}(p_{\theta^*}(y_t^{(i)}|\mathbf{y}_{< t}^{(i)}, \mathbf{x}^{(i)})||p_{\theta}(\hat{y}_t^{(i)}|\hat{\mathbf{y}}_{< t}^{(i)}, \mathbf{x}^{(i)})$$

$$\hat{\mathbf{H}}^{(i)} = \overline{\mathbf{H}}^{(i)} - \eta \frac{\mathbf{f}}{||\mathbf{f}||_2}$$
, where $\mathbf{f} = \nabla_{\overline{\mathbf{H}}_1^{(i)}} \mathcal{L}_{KL}(\theta)$

Semantic space ↓

$$\mathcal{L}_{cont-pos}(\theta) = \sum_{i=1}^{N} \log \frac{\exp(\operatorname{sim}(\mathbf{z}_{\mathbf{x}}^{(i)}, \hat{\mathbf{z}}_{\mathbf{y}}^{(i)})/\tau)}{\sum_{\mathbf{z}_{\mathbf{y}}^{(k)} \in S \cup \{\tilde{\mathbf{z}}_{\mathbf{y}}^{(i)}\}} \exp(\operatorname{sim}(\mathbf{z}_{\mathbf{x}}^{(i)}, \mathbf{z}_{\mathbf{y}}^{(k)})/\tau)}, \text{ where } \hat{\mathbf{z}}_{\mathbf{y}}^{(i)} = \xi(\hat{\mathbf{H}}^{(i)}; \theta)$$

Imposter and Distant-Target

Figure 3: Generation of imposters and distant-targets with perturbation. (a) We add small perturbation δ_t to \mathbf{h}_t for $\tilde{\mathbf{z}}_{\mathbf{y}}$ so that its conditional likelihood is minimized to generate an invalid sentence. (b) We add large perturbation ζ_t to \mathbf{h}_t for $\hat{\mathbf{z}}_{\mathbf{y}}$ by maximizing the distance from $\mathbf{z}_{\mathbf{x}}$, the representation of source sentence but enforcing its likelihood high to preserve the original semantics.

CLAPS Objective

$$\max_{\theta} \mathcal{L}_{MLE}(\theta) - \alpha \mathcal{L}_{KL}(\theta) + \beta \{\mathcal{L}_{cont-neg}(\theta) + \mathcal{L}_{cont-pos}(\theta)\}$$

Experiment

Experiment

Machine Translation

- WMT16 Romanian-English parallel corpus (WMT'16 RO-EN)
- T5-small model

Text Summarization

- XSum dataset
- T5-small model

Question Generation

- SQuAD dataset
- T5-small model

Table 4: The statistics and the data source of WMT'16 RO-EN, Xsum, and SQuAD.								
Datasets	Train (#)	Valid (#)	Test (#)	Source				
WMT'16 RO-EN	610,320	1,999	1,999	Romanian-English Parallel corpus.				
Xsum	204,045	11,332	11,334	One-sentence summary of BBC news articles.				
SQuAD	86,588	5,192	5,378	Crowd-sourced questions from Wikipedia paragraph				

Results

Method	Aug.	BLEU-1	BLEU-2	BLEU-3	BLEU-4	BLEU	F1/EM		
Question Generation - SQuAD									
Harvesting-QG	(-	-		20.90	15.16	-	66.05/54.62		
T5-MLE	-	41.26	30.30	23.38	18.54	21.00	67.64/55.91		
α -T5-MLE ($\alpha = 0.7$)	-	40.82	29.79	22.84	17.99	20.50	68.04/56.30		
α -T5-MLE ($\alpha = 2.0$)	-	37.35	27.20	20.79	16.36	18.41	65.74/54.76		
T5-SSMBA	Pos.	41.67	30.59	23.53	18.57	21.07	68.47/56.37		
T5-WordDropout Contrastive	Neg.	41.37	30.50	23.58	18.71	21.19	68.16/56.41		
R3F	-	41.00	30.15	23.26	18.44	20.97	65.84/54.10		
T5-MLE-contrastive	-	41.23	30.28	23.33	18.45	20.91	67.32/55.25		
T5-CLAPS w/o negative	Pos.	41.87	30.93	23.90	18.92	21.38	(4)		
T5-CLAPS w/o positive	Neg.	41.65	30.69	23.71	18.81	21.25	68.26/56.41		
T5-CLAPS	Pos.+Neg.	42.33	31.29	24.22	19.19	21.55	69.01/57.00		
ERNIE-GEN (Xiao et al., 2020)	-	-	÷	3	26.95	-	-		
Info-HCVAE (Lee et al., 2020)	-	-	-	8	-	-	81.51/71.18		
	Machin	e Translatio	on - WMT'1	6 RO-EN					
Transformer	-	50.36	37.18	28.42	22.21	26.17			
Scratch-T5-MLE	-	51.62	37.22	27.26	21.13	25.34			
Scratch-CLAPS	Pos.+Neg.	53.42	39.57	30.24	23.59	27.61			
T5-MLE	-	57.76	44.45	35.12	28.21	32.43			
α -T5-MLE ($\alpha = 0.7$)	-	57.63	44.23	33.84	27.90	32.14			
α -T5-MLE ($\alpha = 2.0$)	V=:	56.03	42.59	33.29	26.45	30.72			
T5-SSMBA	Pos.	58.23	44.87	35.50	28.48	32.81			
T5-WordDropout Contrastive	Neg.	57.77	44.45	35.12	28.21	32.44			
R3F	-	58.07	44.86	35.57	28.66	32.99			
T5-MLE-contrastive	0.00	57.64	44.12	34.74	27.79	32.03			
T5-CLAPS w/o negative	Pos.	58.81	45.52	36.20	29.23	33.50	67.58/55.91		
T5-CLAPS w/o positive	Neg.	57.90	44.60	35.27	28.34	32.55			
T5-CLAPS	Pos.+Neg.	58.98	45.72	36.39	29.41	33.96			
Conneau & Lample (2019)	-	-		ž	=	38.5			

Table 1: BLEU scores on WMT'16 RO-EN and SQuAD for machine translation and question generation. EM/F1 scores with BERT-base QA model for question generation.

Results

Table 2: Rouge and Meteor on Xsum test set for text summarization.

Method	Aug.	Rouge-1	Rouge-2	Rouge-L	METEOR					
Text Summarization - XSum										
PTGEN-COVG	-	28.10	8.02	21.72	12.46					
CONVS2S	-	31.89	11.54	25.75	13.20					
Scratch-T5-MLE	-	31.44	11.07	25.18	13.01					
Stcratch-CLAPS	Pos.+Neg.	33.52	12.59	26.91	14.18					
T5-MLE	-	36.10	14.72	29.16	15.78					
α -T5-MLE ($\alpha = 0.7$)	-	36.68	15.10	29.72	15.78					
α -T5-MLE ($\alpha = 2.0$)	-	34.18	13.53	27.35	14.51					
T5-SSMBA	Pos.	36.58	14.81	29.68	15.38					
T5-WordDropout Contrastive	Neg.	36.88	15.11	29.79	15.77					
R3F	-	36.96	15.12	29.76	15.68					
T5-MLE-contrastive	-	36.34	14.81	29.41	15.85					
T5-CLAPS w/o negative	Pos.	37.49	15.31	30.42	16.36					
T5-CLAPS w/o positive	Neg.	37.72	15.49	30.74	16.06					
T5-CLAPS	Pos.+Neg.	37.89	15.78	30.59	16.38					
PEGASUS (Zhang et al., 2020)	-	47.21	24.56	39.25	-					

Visualization

(a) Finetune without contrastive learning

(b) Finetune with contrastive learning

Qualitative Examples

```
(MT) Lupta lui Hilary a fost mai atractivă.
=>(GT): Hillary's struggle was more attractive
=>(Dist.): Hilary's fight was more attractive
=>(Imp.): Thearies' battle fight has attractive appealing
(QG) ... Von Miller ... recording five solo tackles, ...
=>(GT): How many solo tackles did Von Miller make at Super Bowl 50?
=>(Dist.): How many solo tackles did Von Miller record at Super Bowl 50?
=>(Imp.): What much tackle did was Miller record at Super Bowl 50?
(Sum.) Pieces from the board game ... have been found in ... China. ...
=>(GT): An ancient board game has been found in a Chinese Tomb.
=>(Dist.): An ancient board game has been discovered in a Chinese Tomb.
=>(Imp.): America's gained vast Africa most well geographical countries, 22
```

Table 3: Greedy decoding from hidden representation of imposters and distant-targets. The answer span is highlighted for QG.

Human Evaluation

- Conduct a human evaluation of the 20 summaries and 20 questions generated by our CLAPS and T5-MLE trained for text summarization and QG task.
- 20 human judges perform blind quality assessment
- For text summarization, 70% of the human annotators chose the sentences generated by our model as better than the baseline, and
- For QG, 85% favored the sentences generated by our model over that of the baseline.

Conclusion

Conclusion

- Contrastive learning framework to mitigate the exposure bias problem.
- New principled approach to automatically construct "hard" negative and positive examples.
- Method improved the performance of seq2seq model on machine translation, question generation, and text summarization tasks.

Last of the Last

Manifold?

- •黎曼开始了关于延展性、维数、延展性数量化的讨论,他给了这些多度延展的量一个名称,德文写作mannigfaltigkeit,英文翻译为Manifold,英文字面意思可以理解为"多种多样"。
- •中国第一个拓扑学家江泽涵(北大教授)把这个词翻译为"流 形",取自
 - 文天祥《正气歌》, "天地有正气,杂然赋流形",
 - 而其原始出处为《易经》,"大哉乾元,万物资始,乃统天。 云行雨施,品物流形。"

Manifold

Thanks~