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Background



| Problem: Exposure Bias

* Train: teacher forcing
* Input ground truth label.

* Test:
* Input previous generated words.




| Prior Works to Tackle the Exposure Bias
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| How about Reinforce and GAN?
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Overview



| Overview

* Contrastive Learning
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| Conditional Text Generation
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| Simple Contrastive Learning Framework

* select the negative pairs as a random non-target output sequence
from the same batch.

* maximize the similarity between the pair of source and target
sequence, while minimizing the similarity between the negative pairs
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| Problem

* [arge portion of positive-negative pairs can be easily discriminated
without any training
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Contrastive Learning with Adversarial
Perturbations for Seq2Seq



| Method
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| Generation of Imposters
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| Generation of Imposters Jinmet,
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| Generation of Distant-Targets 7!,
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| Imposter and Distant-Target
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Figure 3: Generation of imposters and distant-targets with perturbation. (a) We add small perturbation
d+ to h; for zy so that its conditional likelihood is minimized to generate an invalid sentence. (b) We add large
perturbation (; to h; for Z, by maximizing the distance from z, the representation of source sentence but

enforcing its likelihood high to preserve the original semantics.
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| CLAPS Objective
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Experiment



| Experiment

e Machine Translation

* WMT16 Romanian-English parallel corpus (WMT’16 RO-EN)
* T5-small model

e Text Summarization

e XSum dataset Table 4: The statistics and the data source of WMT’16 RO-EN, Xsum, and SQuAD.
Datasets Train (#) Valid (#) Test(#) Source
 T5-small model WMT’ 16 RO-EN 610,320 1,999 1,999 Romanian-English Parallel corpus.
Xsum 204,045 11,332 11,334 One-sentence summary of BBC news articles.
® Qu est i on G enerat i on SQuAD 86,588 5,192 5,378 Crowd-sourced questions from Wikipedia paragraph

 SQUAD dataset

e T5-small model
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| Results

Method Aug. BLEU-1 BLEU-2 BLEU-3 BLEU-4 BLEU F1/EM
Question Generation - SQuAD
Harvesting-QG - - - 20.90 15.16 - 66.05/54.62
T5-MLE - 41.26 30.30 23.38 18.54 21.00  67.64/55.91
a-T5-MLE (« = 0.7) - 40.82 29.79 22.84 17.99 20.50  68.04/56.30
a-T5-MLE (a = 2.0) - 37.35 27.20 20.79 16.36 18.41  65.74/54.76
T5-SSMBA Pos. 41.67 30.59 23.53 18.57 21.07  68.47/56.37
T5-WordDropout Contrastive Neg. 41.37 30.50 23.58 18.71 21.19  68.16/56.41
R3F - 41.00 30.15 23.26 18.44 2097  65.84/54.10
T5-MLE-contrastive - 41.23 30.28 23.33 18.45 2091  67.32/55.25
T5-CLAPS w/o negative Pos. 41.87 30.93 23.90 18.92 21.38 -
T5-CLAPS w/o positive Neg. 41.65 30.69 23.71 18.81 21.25  68.26/56.41
T5-CLAPS Pos.+Neg. 42.33 31.29 24.22 19.19 21.55  69.01/57.06
ERNIE-GEN (Xiao et al2020l - . - - 26.95 - -
Info-HCVAE (Lee et al.; 2020} - - - - - - 81.51/71.18
Machine Translation - WMT' 16 RO-EN

Transformer - 50.36 37.18 28.42 22.21 26.17
Scratch-T5-MLE - 51.62 37.22 27.26 21.13 25.34

[ Scratch-CLAPS Pos.+Neg. 5342 39.57 30.24 23.59 27.61
T5-MLE - 57.76 44.45 35.12 28.21 3243
a-T5-MLE (o = 0.7) - 57.63 4423 33.84 27.90 32.14
a-T5-MLE (o = 2.0) - 56.03 42.59 33.29 26.45 30.72
T5-SSMBA Pos. 58.23 44.87 35.50 28.48 32.81
T5-WordDropout Contrastive Neg. S1.71 44.45 35.12 28.21 32.44
R3F - 58.07 44.86 35.57 28.66 32.99
T5-MLE-contrastive - 57.64 44.12 34.74 27.79 32.03
T5-CLAPS w/o negative Pos. 58.81 45.52 36.20 29.23 3350 67.58/55.91
T5-CLAPS w/o positive Neg. 57.90 44.60 35.27 28.34 32.55
T5-CLAPS Pos.+Neg. 58.98 45.72 36.39 29.41 33.96
Conneau & Lample“:("20' 19} = - - - = 38.5

Table 1: BLEU scores on WMT’16 RO-EN and SQuAD for machine translation and question generation.
EM/F1 scores with BERT-base QA model for question generation.



| Results

Table 2: Rouge and Meteor on Xsum test set for text summarization.

Method Aug. Rouge-1 Rouge-2 Rouge-. METEOR
Text Summarization - XSum
PTGEN-COVG - 28.10 8.02 21.72 12.46
CONVS2S - 31.89 11.54 25.75 13.20
Scratch-T5-MLE - 31.44 11.07 25.18 13.01
Stcratch-CLAPS Pos.+Neg. 33.52 12.59 26.91 14.18
T5-MLE - 36.10 14.72 29.16 15.78
a-T5-MLE (a = 0.7) - 36.68 15.10 29.72 15.78
a-T5-MLE (a = 2.0) - 34.18 13.53 27.35 14.51
T5-SSMBA Pos. 36.58 14.81 29.68 15.38
T5-WordDropout Contrastive Neg. 36.88 15.11 29.79 15.77
R3F - 36.96 15.12 29.76 15.68
T5-MLE-contrastive - 36.34 14.81 29.41 15.85
T5-CLAPS w/o negative Pos. 37.49 15.31 30.42 16.36
TS5-CLAPS w/o positive Neg. 3.2 15.49 30.74 16.06
TS5-CLAPS Pos.+Neg. 37.89 15.78 30.59 16.38

PEGASUS (Zhang et al., 2020) - 47.21 24.56 39.25 -




| Visualization
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| Qualitative Examples

(MT) Lupta lui Hilary a fost mai atractiva.

=>(GT): Hillary’s struggle was more attractive

=>(Dist.): Hilary’s fight was more attractive

=>(Imp.): Thearies’ battle fight has attractive appealing

(QG) ... Von Miller ... recording flve solo tackles, ...

=>(GT): How many solo tackles did Von Miller make at Super Bowl 507?
=>(Dist.): How many solo tackles did Von Miller record at Super Bowl 50?
=>(Imp.): What much tackle did was Miller record at Super Bowl| 50?

(Sum.) Pieces from the board game ... have been found in ... China. ...
=>(GT): An ancient board game has been found in a Chinese Tomb.

=>(Dist.): An ancient board game has been discovered in a Chinese Tomb.
=>(Imp.): America’s gained vast Africa most well geographical countries, 22

Table 3: Greedy decoding from hidden representation

of imposters and distant-targets. The answer span 1is
highlighted for QG.
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| Human Evaluation

e Conduct a human evaluation of the 20 summaries and 20 questions
generated by our CLAPS and T5-MLE trained for text summarization
and QG task.

* 20 human judges perform blind quality assessment

e For text summarization, 70% of the human annotators chose the
sentences generated by our model as better than the baseline, and

* For QG, 85% favored the sentences generated by our model over that
of the baseline.



Conclusion



| Conclusion

e Contrastive learning framework to mitigate the exposure bias

problem.

* New principled approach to automatically construct “hard” negative

and positive examples.

 Method improved the performance of seq2seq model on machine

translation, question generation, and text summarization tasks.
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