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Background

• General GNN Framework
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Background

• Graph Attention Network
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Background

• Relational graph convolutional networks (R-GCN)
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Background
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• Node classification
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Heterogeneous Information 
Networks (HIN)
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OAG Graph
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OAG Graph
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Tasks

• Node Classification

• Paper-Field prediction

• Paper–Field (L1) 

• Paper–Field (L2)

• Paper-Venue prediction

• Link prediction

• Author Disambiguation tasks
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Heterogeneous Graph
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Type mapping functions

Directed graph

𝑣 =< Heterogeneous Graph Transformer >

𝜏 𝑣 = 𝑝𝑎𝑝𝑒𝑟

𝑒 = (𝐻𝐺𝑇,𝐻𝐴𝑁)

∅ 𝑒 = 𝑐𝑖𝑡𝑒𝑑



Meta Relation
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𝑒 = (𝐻𝐺𝑇,𝐻𝐴𝑁)

< 𝜏 𝑠 , ∅ 𝑒 , 𝜏 𝑡 >
=< 𝑝𝑎𝑝𝑒𝑟, 𝑐𝑖𝑡𝑒𝑑, 𝑝𝑎𝑝𝑒𝑟 >



Model

• Heterogeneous Mutual Attention
• Heterogeneous Message Passing
• Target-Specific Aggregation
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Heterogeneous Mutual Attention
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Heterogeneous Mutual Attention
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Heterogeneous Message Passing
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Target-Specific Aggregation
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Overall Architecture
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Dynamic Heterogeneous Graph
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𝑒 = (𝐻𝐺𝑇,𝑊𝑊𝑊)

𝑣 = 𝐻𝐺𝑇

𝑊𝑊𝑊2020

𝑒 = (𝐻𝐺𝑇,𝑊𝑊𝑊) timestamp 2020

𝑣 = 𝐻𝐺𝑇 timestamp 2020

𝑣 = 𝑊𝑊𝑊 timestamp 2020

𝑒 = (𝐻𝐺𝑇,𝑊𝑊𝑊)

𝑣 = 𝐻𝐴𝑁

𝑊𝑊𝑊2019

𝑒 = (𝐻𝐴𝑁,𝑊𝑊𝑊) timestamp 2019

𝑣 = 𝐻𝐴𝑁 timestamp 2019

𝑣 = 𝑊𝑊𝑊 timestamp 2019



Relative Temporal Encoding
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Relative Temporal Encoding
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Overall Architecture
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HGSampling

• keep a similar number of nodes and edges for each 
type
• keep the sampled sub-graph dense to minimize the 

information loss and reduce the sample variance.
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Baselines

• GCN
• GAT
• R-GCN
• HetGNN (KDD19 Heterogeneous Graph Neural 

Network)
• HAN (WWW19 Heterogeneous Graph Attention 

Network)
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Input Features

• Paper
• pre-trained XLNet to get the representation of 

each word in its title. 
• Average them weighted by each word’s 

attention to get the title representation for each 
paper.

• Author 
• average of his/her published papers’ 

representations
• Field, venue, and institute
• metapath2vec
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Results
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Visualize Meta Relation Attention
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Papers
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Thanks!
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