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Pretraining Data

1. Common Crawl
2. FineWeb
3. Code Pretraining Data
4. Math Pretraining Data
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Common Crawl

• Common Crawl is a non–profit founded in 2007.

• Common crawl is an open repository of web crawl data that can be accessed and 

analyzed by researchers, data scientists, and developers.

• Over 250 billion pages spanning 18 years.

• 3–5 billion new pages added each month.

Language Models are Few-Shot Learners (NeurIPS 2020) 41422 Citations

GPT-3
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https://commoncrawl.org/get-started

Common Crawl

• WARC files which store the raw crawl data

• WAT files which store computed metadata for the data stored in the WARC

• WET files which store extracted plaintext from the data stored in the WARC

https://data.commoncrawl.org/crawl-data/CC-MAIN-2025-08/index.html

CC-MAIN-2025-08

Year WeekMain File
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FineWeb

• FineWeb, a new, large-scale (15-trillion tokens, 44TB disk space) dataset for LLM 
pretraining. 

• FineWeb is derived from 96 CommonCrawl snapshots and produces better-
performing LLMs than other open pretraining datasets.

https://huggingface.co/datasets/HuggingFaceFW/fineweb

How AP reported in all formats from tornado-stricken 
regions March 8, 2012 When the first serious bout of 
tornadoes of 2012 blew through middle America in 
the middle of the night, they touched down in places 
hours from any AP bureau. Our closest video 
journalist was Chicago-based Robert Ray, who 
dropped his plans to travel to Georgia for Super 
Tuesday, booked several flights to the cities closest to 
the strikes and headed for the airport. He’d decide 
once there which flight to take. He never got on board 
a plane. Instead, he ended up driving toward 
Harrisburg, Ill., where initial reports suggested a town 
was destroyed. That decision turned out to be a lucky 
break for the AP. Twice.

6



FineWeb Recipe

https://huggingface.co/spaces/HuggingFaceFW/blogpost-fineweb-v1
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FineWeb Recipe: Text Extraction

• WARC (Web ARChive format) files contain the raw data from the crawl, including 
the full page HTML and request metadata.

• WET (WARC Encapsulated Text) files provide a text only version of those websites.
• Extract the text content from the WARC files using the trafilatura library

https://huggingface.co/spaces/HuggingFaceFW/blogpost-fineweb-v1
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FineWeb Recipe: Base filtering

• Filtering is an important part of the curation process. 
• It consists in removing part of the data (be it words, lines, or even full documents) 

that lowers the performance of the model
• Applied URL filtering using a blocklist (https://dsi.ut-capitole.fr/blacklists/) to remove adult 

content
• Applied a fastText language classifier to keep only English text with a score ≥ 0.65
• Applied quality and repetition filters from MassiveText

Scaling Language Models: Methods, Analysis & Insights from Training Gopher
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FineWeb Recipe: Deduplication

• Methods to deduplicate datasets attempt to identify and remove 
redundant/repeated data from the dataset.

• Removing these duplicates (deduplicating) has been correlated with improvements 
in model performance[1] and a reduction in memorization of pretraining data[2], 
which might allow for better generalization. 

• Additionally, the performance uplift obtained through deduplication can be 
equated to increased training efficiency: by removing duplicated content, a model 
can reach the same performance level with fewer training iterations – or 
equivalently, for a given number of training tokens, a model will have seen more 
diverse data.[3][4]

[1] Deduplicating Training Data Makes Language Models Better
[2] Quantifying Memorization Across Neural Language Models
[3] Scaling Data-Constrained Language Models
[4] Scaling Laws and Interpretability of Learning from Repeated Data
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FineWeb Recipe: MinHash Deduplication

I like to eat apples 
and bananas

I like to eat bananas 
and apples

I hate to eat 
vegetables and 

fruits

Document A Document B Document C

(I like ),(like to) ,(to 
eat) ,(eat apples) ,(apples 

and) ,(and bananas) 

(I like ),(like to) ,(to 
eat) ,(eat 

bananas) ,(bananas 
and) ,(and apples) 

(I hate ),(hate to) ,
(to eat) ,(eat 

vegetables) ,(vegetables
and) ,(and fruits) 

Document A (2-grams) Document B (2-grams) Document C (2-grams)

Apply Hash Functions (ℎ1, ℎ2, ℎ3, ℎ4)
Each gram is hashed with 4 different hash functions to generate hash values.

ℎ1 : min(42, 18, 29, 16, 8, 13) = 8
ℎ2 : min(13, 41, 33, 22, 37, 19) = 13
ℎ3 : min(25, 10, 17, 35, 29, 32) = 10
ℎ4 : min(7, 31, 21, 14, 28, 24) = 7

Document A Document B Document C

ℎ1 : min(42, 18, 29, 44, 24, 11) = 11
ℎ2 : min(13, 41, 33, 16, 30, 26) = 13 
ℎ3 : min(25, 10, 17, 20, 15, 39) = 10 
ℎ4 : min(7, 31, 21, 8, 19, 9) = 7

ℎ1 : min(32, 19, 29, 38, 27, 15) = 15 
ℎ2 : min(45, 14, 33, 10, 20, 34) = 10 
ℎ3 : min(6, 42, 17, 31, 12, 23) = 6 
ℎ4 : min(40, 36, 21, 27, 33, 17) = 17

Band 1 (8, 13)
Band 2 (10, 7)

Document A Bands Document B Bands Document C Bands
Band 1 (11, 13)
Band 2 (10, 7)

Band 1 (15, 10)
Band 2 (6, 17)
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Pretraining Data: Code

Qwen2.5-Coder Technical Report
DeepSeek-Coder: When the Large Language Model Meets Programming -- The Rise of Code Intelligence

Github
92 Programming 

Language

Github
87 Programming 

Language

Other Formats

Code-specific Rule-
based Filtering

Qwen2.5-Coder

DeepSeek-Coder
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Pretraining Data: Math (Qwen Math Corpus v1)

Qwen2.5-Math Technical Report: Toward Mathematical Expert Model via Self-Improvement

• Data recall
• Recall of mathematical data from web sources, such as Common Crawl, to escalate the quantity of data
• Train a FastText classifier to classify mathematical texts.
• Leverage meta-information, such as URLs, to expand the data pool for mathematical data retrieval. 

• Deduplication
• MinHash is employed to filter out similar mathematical documents.

• Filtering
• Language-model-based filtering technique to further curate the dataset. 

• Data synthesis
• Employ the Qwen2-72B-Instruct model to synthesize a large amount of mathematical pre-training 

corpus
• Optimization of the data mixture

• Conduct ablation studies on data mixture using a small math-specific language model.

Data 
Recall

Deduplic
ation

Filtering
Data 

synthesis
Optimization of 

the data mixture

Obtain more 
mathematical data

remove duplicates filter out low-
quality data

synthesize 
additional data

optimize the proportion of 
data from multiple 

sources

Qwen Math 
Corpus v1

700 billion tokens
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Tokenization

1. What is tokenization?
2. Word-level Tokenization
3. Byte Pair Encoding (BPE)
4. Quirks of LLM Tokenization
5. Byte-Level Large Language Model
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Tokenization

Pretraining Data Neural NetworkTrained Tokenizer

Tokenization is the process of splitting text into smaller units (tokens) to enable 
efficient processing and analysis in Natural Language Processing.

The University of Hong Kong

Token count: 5

GPT4 
Tokenizer

https://tiktokenizer.vercel.app/

TokenizerData for training 
tokenizer
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Basic: Word-Level Tokenization

• Word-level tokenization splits text into individual words based on spaces and 
punctuation, making it suitable for languages with clear word boundaries like English.

HKU is dedicated to empowering
women for a brighter future.
Fostering diversity, inclusivity,
and gender equality is crucial
for our success. Let's honour
women's achievements and work
together towards a world where
they can thrive and lead

HKU

is

dedicated

to

…

lead

Original Document

Words Word Vectors (Embeddings)

NN
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Byte Pair Encoding (BPE)

• Byte Pair Encoding (BPE) is a subword
tokenization algorithm that iteratively 
merges the most frequent adjacent 
character pairs to create a vocabulary of 
subwords, helping models handle rare 
words and out-of-vocabulary (OOV) words 
efficiently.

https://www.reddit.com/r/LocalLLaMA/comments/1hmkirm/incredible_blog_post_on_byte_pair_encoding/ 17



Byte Pair Encoding (BPE)

• Two words in the dataset: low and lowest
• Initialization

• Start with each character in the corpus 
as a separate token

• Vocabulary: {l, o, w, e, s, t, </w>}
• Tokenization at Character Level:

• “low” → l o w </w>
• “lowest” → l o w e s t </w>

• Counting Pair Frequencies
• Pair l o appears twice; 
• Pair o w appears twice; 
• Pair w </w> appears once; 
• Pair e s appears once; 
• Pair s t appears once: in "lowest".

• Merge the Most Frequent Pair:
• “low” → l ow </w>
• “lowest” → l ow e s t </w>
• Vocabulary: {l, o, w, e, s, t, </w>, ow}

• Recount Pair Frequencies:
• Pair l ow appears twice; 
• Pair e s appears once; 
• Pair s t appears once.

• Merge the Next Frequent Pair:
• “low” → low </w>
• “lowest” → low e s t </w>
• Vocabulary: {l, o, w, e, s, t, </w>, 

ow, low}
• Merge the Next Frequent Pair:

• “lowest” → low es t </w>
• Vocabulary: {l, o, w, e, s, t, </w>, 

ow, low, es}
• Merge the Final Pair:

• “lowest” → low est </w>
• Vocabulary: {l, o, w, e, s, t, </w>, 

ow, low, es, est}
• Final Vocabulary:

• Vocabulary: {l, o, w, e, s, t, </w>, 
ow, low, es, est}

• “low” → low </w>
• “lowest" → low est </w>

{l, o, w, e, s, t, 
</w>, ow, low, es, 
est}

o w→ ow
l ow --> low
e s → es
es t → est

Vocab

Merge 
Rules

lower

l o w e r </w>

low e r </w>

low e unk </w>

new word

initialization

merge

final

Apply BPE for New Word

https://huggingface.co/learn/nlp-course/chapter6/5
https://vizuara.substack.com/p/understanding-byte-pair-encoding
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Note1: Byte-level Byte Pair Encoding (BPE)

• A base vocabulary that includes all possible base characters can be quite large 
if e.g. all unicode characters are considered as base characters.

• To have a better base vocabulary, GPT-2 uses bytes as the base vocabulary, which 
is a clever trick to force the base vocabulary to be of size 256 while ensuring that 
every base character is included in the vocabulary.

Byte sequence

https://huggingface.co/docs/transformers/tokenizer_summary#byte-level-bpe 19



Note2: Independent Module Separate from LLM

• Tokenizer is a completely separate, independent module from the LLM. It has its 
own training dataset of text (which could be different from that of the LLM), on 
which you train the vocabulary using the Byte Pair Encoding (BPE) algorithm. It 
then translates back and forth between raw text and sequences of tokens. 

• The LLM later only ever sees the tokens and never directly deals with any text.

Let's build the GPT Tokenizer, Andrej Karpathy

decodingencoding

20



Note3: Visualization Tool for Tokenization

https://tiktokenizer.vercel.app/ 21

https://tiktokenizer.vercel.app/


Minimal Implementation
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Additional:

① Select the code

② Ask the question

③ Explain 
and Answer

https://www.cursor.com/ 23



Minimal Implementation
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Quirks of LLM Tokenization

• Why can't LLM spell words? Tokenization.

• Why can't LLM do super simple string processing tasks like reversing a 

string? Tokenization.

• Why is LLM worse at non-English languages (e.g. Japanese)? Tokenization.

• Why is LLM bad at simple arithmetic? Tokenization.

• Why did GPT-2 have more than necessary trouble coding in Python? Tokenization.

• Why did my LLM abruptly halt when it sees the string "<|endoftext|>"? Tokenization.

• What is this weird warning I get about a "trailing whitespace"? Tokenization.

• Why the LLM break if I ask it about "SolidGoldMagikarp"? Tokenization.

• Why should I prefer to use YAML over JSON with LLMs? Tokenization.

• Why is LLM not actually end-to-end language modeling? Tokenization.

• What is the real root of suffering? Tokenization.

Deep Dive into LLMs like ChatGPT, Andrej Karpathy 25



Byte-level LLM: EvaByte

• EvaByte is the first open-source byte-level model without tokenization that yet 
matches the performance of modern tokenizer-based LMs.

EvaByte: Efficient Byte-level Language Models at Scale
https://hkunlp.github.io/blog/2025/evabyte/

multibyte prediction

the efficient attention mechanismPerformance
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More Topics

• Regex patterns
• Tiktoken library 
• Special tokens

Exercise
• https://github.com/k

arpathy/minbpe
• https://github.com/k

arpathy/minbpe/blo
b/master/exercise.m
d https://www.youtube.com/watch?v=zduSFxRajkE&t=5399s

Let's build the GPT Tokenizer, Andrej Karpathy 27



Transformer

• Transformer
• Attention Mechanism
• Multi-Head Attention
• Visualization
• Python Library
• HuggingFace Transformers
• Different Architectures

28



Transformer

• Transformer Architecture – Introduced a model relying 
entirely on self-attention, removing recurrence (RNNs) and 
convolution.

• Self-Attention Mechanism – Enabled parallel processing of 
words by attending to all positions in a sequence.

• Multi-Head Attention – Allowed the model to capture 
multiple relationships between words simultaneously.

• Positional Encoding – Injected sequence order information 
into the model, since Transformers lack recurrence.

• State-of-the-Art Results – Achieved breakthrough 
performance in machine translation and laid the foundation 
for models like BERT & GPT.

Attention is All You Need 29



Attention Mechanism

• Attention in Transformers is a mechanism that enables the model to focus on 
relevant parts of the input sequence by dynamically weighting token relationships, 
improving context understanding and long-range dependencies.

https://github.com/rasbt/LLMs-from-scratch
https://lih-verma.medium.com/query-key-and-value-in-attention-mechanism-3c3c6a2d4085 30



Multi-Head Attention

Generated by GPT-4o
(give me the minimal code implementation of multi-head attention)Attention is All You Need
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Visualization

https://bbycroft.net/llm 32



Python Library

• There are already numerous tools available for quickly building various Transformer 
architectures.

https://github.com/huggingface/transformers https://github.com/facebookresearch/xformers
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HuggingFace Transformers

https://huggingface.co/Qwen/Qwen2.5-7B-Instruct 34



Different Architectures

https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-mamba-and-state
https://www.rwkv.com/

35

RWKVMamba



Pretraining

• Training a Neural Network
• Traditional Training vs Pretraining
• Core Implementation
• NIVIDIA GPU
• Memory Usage
• Pretraining Optimization
• Lingua
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Training a Neural Network

• Prepare Data – Collect, preprocess, and split data 
into training, validation, and test sets.

• Define Model – Choose a neural network 
architecture (e.g., MLP, CNN, Transformer) and 
initialize parameters.

• Select Loss Function & Optimizer – Define a loss 
function (e.g., Cross-Entropy, MSE) and an optimizer 
(e.g., SGD, Adam).

• Train the Model – Iterate over multiple epochs, 
performing forward propagation, loss computation, 
and backpropagation to update weights.

• Evaluate  – Assess model performance on 
validation/test data.

Deep Dive into LLMs like ChatGPT, Andrej Karpathy
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Traditional Training vs Pretraining

Feature Traditional Training Pretraining

Objective
Learn task-specific patterns

from scratch
Learn general representations or 

features

Dataset Labeled task-specific dataset
Large, diverse, unlabeled

(self-supervised)

Training Time
Shorter

(depends on dataset size)
Longer

(days to weeks to months)

Generalization
Low

(trained for a specific task only)
High

(can be adapted to many tasks)

Fine-tuning? No fine-tuning, trained end-to-end
Yes, adapted to downstream tasks

No, Zero-shot prompting

38



Core Implementation

Define Model

Define Data

Define 
Training Args

Start Training

39



GPU

• NVIDIA GPUs are high-
performance graphics 
processing units designed 
for computing tasks such 
as gaming, AI, deep 
learning, and scientific 
simulations, offering 
powerful parallel 
processing capabilities.

https://www.megware.com/fileadmin/user_upload/LandingPage%20NVIDIA/nvidia-h100-datasheet.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a100/pdf/nvidia-a100-datasheet-us-nvidia-1758950-r4-web.pdf

H100

40



Memory Usage

FP32 FP16 INT8

BERT-base-uncased-0.1B 0.5 GB 0.24 GB 0.12 GB

GPT-2-0.1B 0.56 GB 0.28 GB 0.14 GB

TinyLlama-1.1B-Chat 4.6 GB 2.3 GB 1.1 GB

Microsoft Phi-2 11.8 GB 6 GB 3 GB

Mistral-7B-v0.2 33 GB 16.5 GB 8.25 GB

Llama-3-8B-Instruct 33 GB 17 GB 8.5 GB

Llama-3-70B-Instruct 311 GB 155 GB 77 GB

Qwen2-72B-Instruct 322 GB 161 GB 80 GB

Mistral-8x22B-v0.1 631 GB 316 GB 158 GB

Bloom-176B 787 GB 394 GB 200 GB

Assumption: Text length is 512, batch size is 8, and the number of GPUs is 1.

• The table shows the GPU memory required for inference, while the memory 
required for training is approximately four times that of inference.

https://www.llamafactory.cn/gpu-memory-estimation.html
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Pretraining Optimization

• Model Parallelism – Splits a large model across multiple GPUs, distributing different layers or 
partitioning individual layers (e.g., tensor parallelism) to handle memory constraints.

• Data Parallelism – Duplicates the entire model across multiple GPUs, but each GPU processes a 
different mini-batch of data, synchronizing gradients after each step.

https://medium.com/@minhanh.dongnguyen/megatron-lm-how-model-
parallelism-is-pushing-language-models-to-new-heights-c21a5343e06a 42



Lingua

• Meta Lingua is a lightweight, efficient 
codebase developed by Meta AI for 
training and inference of large 
language models (LLMs). 

• Designed with research in mind, it 
utilizes modular PyTorch components, 
enabling researchers to experiment 
with new architectures, loss 
functions, and datasets with ease. 

• This self-contained platform 
facilitates rapid prototyping and 
scalability, making it accessible for 
those with limited computational 
resources. 

https://github.com/facebookresearch/lingua
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Instruction Tuning

• Instruction Tuning
• The Role of Instruction Tuning
• Instruction Data

• Text
• Math
• Code
• Multi-modal

• Instruction Tuning Loss
• Llama-factory

44



Instruction Tuning or Supervised Fine-tuning (SFT)

• Instruction Tuning: Fine-tunes a pretrained model using instruction-based 
datasets to improve task-following abilities.

Feature Pretraining Instruction Tuning

Objective
Train the model on a large-scale corpus to 

learn general language patterns
Make the model better at following human 

instructions across multiple tasks

Training Data
Large, unlabeled, diverse text (e.g., books, 

Wikipedia, web data)
Instruction-based datasets with input-output 

pairs (e.g., “Summarize this text”)

Learning Type
Self-supervised learning (e.g., Masked LM, 

Causal LM)
Supervised fine-tuning on human-written 

instructions

Generalization Learns broad language representations
Adapts to task-following behaviors and 
improves zero-shot/few-shot abilities

Task-Specific?
No, learns from raw text 

without explicit tasks
Yes, explicitly trained to understand 
instructions across multiple domains

Example
Training GPT from scratch 

on massive web data
Fine-tuning GPT on an instruction dataset like 

FLAN, Super-NaturalInstructions

Example Models GPT-3, BERT, T5 (trained from scratch) InstructGPT, ChatGPT, FLAN-T5, GPT-4
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The Role of Instruction Tuning

• Instruction tuning aligns queries with knowledge already in LLMs with similar 
behavioral norms

Learning or Self-aligning? Rethinking Instruction Fine-tuning
46



Instruction Data (Text)

https://huggingface.co/datasets/Josephgflowers/Finance-Instruct-500k

Input
Explain tradeoffs between fiscal and monetary policy as tools in a nation's economic toolkit. Provide

examples of past instances when each were utilized, the economic conditions that led to them being

deployed, their intended effects, and an evaluation of their relative efficacy and consequences.

Fiscal and monetary policy are the two main tools that governments have to influence economic activity.

They each have benefits and drawbacks. Fiscal policy refers to government spending and taxation

decisions. Examples of fiscal policy include: • During the Great Recession, the U.S. government

implemented a fiscal stimulus through the American Recovery and Reinvestment Act of 2009. This included

increased spending on infrastructure, tax cuts, and expanded unemployment benefits. The intention was to

boost aggregate demand and stimulate economic activity. Studies have found that the stimulus had a

positive but modest impact on economic growth. • The Trump administration implemented tax cuts in 2017

with the goal of increasing business investment and growth. However, the effect on growth has been

debated, and the tax cuts significantly increased the federal budget deficit. Monetary policy refers to

decisions by a central bank, like the Federal Reserve, about interest rates and the money supply.

Examples of monetary policy include: • After the 2008 financial crisis, the Fed lowered interest rates to near

zero and implemented quantitative easing programs to increase liquidity. The intention was to boost lending,

investment, and consumer spending. These actions are credited with helping the economy recover. • In the

late 1990s, the Fed raised interest rates to reduce inflationary pressures from economic growth. Higher

rates contributed to slowing the economy and avoiding a spike in prices. The key tradeoffs are:……

Output

47



Instruction Data (Math)

Input
I have 5 marbles numbered 1 through 5 in a bag. Suppose I take out two different marbles at random. What

is the expected value of the sum of the numbers on the marbles?

There are $\binom{5}{2} = 10$ different pairs of marbles can be drawn, and the expected value of the sum 

is the average of the sums of each pair. This is \begin{align*} 

\frac{1}{10}((1+2)+(1+3)+(1+4)+(1+5)+(2+3)&\\ +(2+4)+(2+5)+(3+4)+(3+5)+(4+5))&=\frac{60}{10} = 

\boxed{6}. \end{align*}

Output

https://huggingface.co/datasets/alpayariyak/MATH_Instruction_Format

Input

A standard deck of 52 cards has 13 ranks (Ace, 2, 3, 4, 5, 6, 7, 8, 9, 10, Jack, Queen, King) and 4 suits

($\spadesuit$, $\heartsuit$, $\diamondsuit$, and $\clubsuit$), such that there is exactly one card for any

given rank and suit. Two of the suits ($\spadesuit$ and $\clubsuit$) are black and the other two suits

($\heartsuit$ and $\diamondsuit$) are red. The deck is randomly arranged. What is the probability that the

top three cards are all $\spadesuit$s?

There are 13 ways to choose the first card to be a $\spadesuit$, then 12 ways to choose the second card 

to be another $\spadesuit$, then 11 ways to choose the third card to be a $\spadesuit$. There are $52 

\times 51 \times 50$ ways to choose any three cards. So the probability is $\dfrac{13 \times 12 \times 

11}{52 \times 51 \times 50} = \boxed{\dfrac{11}{850}}$.

Output

48



Instruction Data (Code)

Input

Write me Python code is a program to read, parse, and display thermal data from the Topdon TC001

Thermal camera. It includes detailed information about the program, such as its author, date of creation,

and purpose. The code also includes a list of key bindings for controlling the program, such as

increasing/decreasing blur, changing the interpolated scale, and toggling the HUD. The code also includes

a function to detect if the program is running on a Raspberry Pi, as OpenCV behaves differently on different

builds. The code then initializes the video capture device and sets the appropriate properties, such as not

converting the video to RGB to preserve the temperature data. The code then sets the initial values for

various parameters, such as the window size, scale, and contrast. It also creates a named window for

displaying the thermal data and sets up the font and color map for the display. The main loop of the

program then begins, which includes code for reading the frames from the video capture device, parsing

the thermal data, and displaying the data on the screen. The code also includes code for handling key

presses, such as changing the blur radius, contrast, and color map, and for recording and taking snapshots

of the thermal data.

#!/usr/bin/env python3\n‘’‘\nLes Wright 21 June 2023\nhttps://youtube.com/leslaboratory\nA Python

program to read, parse and display thermal data from the Topdon TC001 Thermal camera!\n’‘’\nprint(‘Les

Wright 21 June 2023’)\nprint(‘https://youtube.com/leslaboratory’)\nprint(‘A Python program to read, parse

and display thermal data from the Topdon TC001 Thermal camera!’)\nprint(‘’)\nprint(‘Tested on Debian all

features are working correctly’)\nprint(‘This will work on the Pi However a number of workarounds are

implemented!’)\nprint(‘Seemingly there are bugs in the compiled version of cv2 that ships with the Pi…

Output

https://huggingface.co/datasets/Shiveswarran/llm_instruction_code_v7 49



Instruction Data (Multi-modal)

Input What sport is this?

a baseball gameOutput

https://huggingface.co/datasets/Multimodal-Fatima/VQAv2_test 50



Instruction Tuning Loss

• Two key factors affecting the effectiveness of Instruction Tuning (IM):
• The ratio between instruction length and output length in the training data. IM is particularly 

effective when instructions are long while outputs are short.

• The number of training samples. IM performs better when the number of training samples is 

small.

Instruction Tuning With Loss Over Instructions

Instruction Response

Instruction Modelling
Calculate loss over both instruction and response

Calculate loss over only response

51



Llama-factory

https://github.com/hiyouga/LLaMA-Factory

Llama3-SFT-Lora

Define source model

Define finetune method

Define dataset

Define tuning args

52



Reinforcement Learning from Human Feedback

• AI Safety
• Reinforcement Learning from Human Feedback
• PPO and DPO
• DPO Implementation
• OpenRLHF
• Post-Training
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AI Safety

• AI safety is crucial to ensure that artificial intelligence systems operate reliably, 
ethically, and without unintended harmful consequences, protecting both 
individuals and society as AI becomes more powerful and autonomous.

https://www.gtlaw.com.au/insights/taylor-swift-highlights-harmful-ai-use-a-tale-of-two-deepfakes 54



Reinforcement Learning from Human Feedback (RLHF)

• Reinforcement Learning from Human Feedback (RLHF) is a technique that fine-
tunes AI models by incorporating human preferences to improve alignment with 
human values and expectations.

Reward Modelling Reinforcement Learning (RL) Optimization

https://huggingface.co/blog/rlhf 55



PPO and DPO

• Direct Preference Optimization (DPO) is an alternative to 

Reinforcement Learning from Human Feedback (RLHF) 

that fine-tunes language models based on human 

preferences without requiring a reward model or 

reinforcement learning.

• Collect human preference data – Given two model 

responses, humans choose the preferred one.

• Optimize the model directly – Instead of training a reward 

model + PPO. DPO directly optimizes the model to 

increase the probability of preferred responses while 

decreasing the probability of rejected ones.

• More stable training – DPO avoids the instabilities and 

high compute costs of RL-based fine-tuning.

Direct Preference Optimization: Your Language Model is Secretly a Reward Model 56



DPO Implementation

https://huggingface.co/docs/trl/main/dpo_trainer

DPO Training
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OpenRLHF

• OpenRLHF is a high-performance 
RLHF framework built on Ray, 
DeepSpeed and HF Transformers.

➢Ray helps distribute RL training 
across multiple GPUs/CPUs.
➢DeepSpeed optimizes large-scale 

model training, making RLHF more 
memory-efficient.
➢HF Transformers provide the LLM 

backbone for fine-tuning.

https://github.com/OpenRLHF/OpenRLHF 58



Post-Training

• Post-training of LLMs refines pretrained models through techniques like 
supervised fine-tuning, instruction tuning, RLHF, DPO, and quantization to 
enhance alignment, efficiency, and task performance.

https://towardsdatascience.com/fine-tune-your-own-llama-2-model-in-a-colab-notebook-df9823a04a32/
LLM Post-Training: A Deep Dive into Reasoning  Large Language Models

Post-Training
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Evaluation

• Benchmarks
• Cantonese Benchmark
• GSM-PLUS
• TMGBench
• VL-RewardBench
• Opencompass
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Benchmarks
Benchmark Focus Area Description Example Metrics

MMLU (Massive Multitask Language 
Understanding)

General knowledge & reasoning 57 subjects covering STEM, humanities, social sciences, etc. Accuracy (%)

HellaSwag Commonsense reasoning Tests everyday scenario understanding Accuracy (%)

ARC (AI2 Reasoning Challenge) Logical reasoning Grade-school-level science and reasoning questions Accuracy (%)

GSM8K (Grade School Math 8K) Math reasoning Solving elementary school-level math problems Accuracy (%)

MATH Advanced math Tests high-school & olympiad-level math ability Accuracy (%)

BBH (BigBench Hard) Complex reasoning Harder subset of BigBench tasks, including ethics, social dynamics Accuracy (%)

TruthfulQA Truthfulness Measures resistance to misinformation and factual consistency Truthfulness Score (%)

MT-Bench Multi-turn chat Evaluates LLMs in a conversational multi-turn dialogue setting Score (1-10)

HumanEval Code generation Tests LLMs' ability to write functional code Pass@1 (%)

MBPP (Multi-turn Python Benchmark) Python programming Evaluates Python code generation for multi-turn problem-solving Pass@1 (%)

OpenAI's Chatbot Arena Overall LLM ranking Human preference ranking of chatbot responses Elo Score

AGIEval Human-like intelligence Measures model performance on human exams (SAT, GRE, LSAT, etc.) Score (%)

SuperGLUE NLP general tasks Evaluates performance across a variety of NLP tasks Accuracy (%)

TydiQA Multilingual QA Tests question-answering ability in multiple languages F1 Score

61



Cantonese Benchmark

Designed to evaluate LLM performance in factual generation, mathematical logic, 
complex reasoning, and general knowledge in Cantonese, which aim to advance 
open-source Cantonese LLM technology.

How Well Do LLMs Handle Cantonese? Benchmarking Cantonese Capabilities of Large Language Models 62



GSM-PLUS

• Adversarial grade school math (GSM-PLUS) dataset, an extension of GSM8K augmented 
with various mathematical perturbations.

GSM-PLUS: A Comprehensive Benchmark for Evaluating the Robustness of LLMs as Mathematical Problem Solvers 63



TMGBench

• A benchmark for evaluating the performance of large language models in game 
theory scenarios.

TMGBench: A Systematic Game Benchmark for Evaluating Strategic Reasoning Abilities of LLMs 64



VL-RewardBench

• A benchmark spanning general multimodal queries, visual hallucination detection, 
and complex reasoning tasks.

VL-RewardBench: A Challenging Benchmark for Vision-Language Generative Reward Models
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Opencompass

• OpenCompass is an LLM evaluation 
platform, supporting a wide range of 
models (Llama3, Mistral, InternLM2,GPT-
4,LLaMa2, Qwen,GLM, Claude, etc) over 
100+ datasets.

https://github.com/open-compass/opencompass

Metric

Prompt

Dataset
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Prompt Engineering

• Prompt Engineering
• Ollama
• Zero-shot Prompting
• Few-shot Prompting
• Chain-of-Thought
• Self-Consistency
• Program-Aided Language Models
• Tree-of-Thought
• Structured Outputs
• OpenAI API
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Prompt Engineering

• Prompt engineering is the 
practice of designing and 
optimizing prompts to 
effectively interact with 
large language models 
(LLMs). Since LLMs generate 
responses based on input 
prompts, the way a prompt 
is structured significantly 
influences the model’s 
output quality, relevance, 
and coherence. https://www.humanfirst.ai/blog/12-prompt-engineering-techniques
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Ollama

• Ollama is an open-source framework 
designed for running and managing large 
language models (LLMs) efficiently on local 
machines. 

• It provides a lightweight, user-friendly way 
to download, deploy, and interact with LLMs 
without requiring cloud-based APIs.

https://ollama.com/ 69



Zero-shot Prompting

• Zero-shot prompting is a technique in prompt engineering where a large language 
model (LLM) is asked to perform a task without providing any explicit examples. 
Instead, the model relies solely on its pre-trained knowledge to generate a 
response based on the instructions given in the prompt.

Prompt

Response
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Few-shot Prompting

• Few-shot prompting is a technique in prompt engineering where a large language 
model (LLM) is provided with a small number of examples (usually 1 to a few) to 
guide its response to a specific task. This approach helps the model better 
understand the desired output format and improves performance compared to 
zero-shot prompting.
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Chain-of-Thought

• Chain-of-Thought (CoT) prompting is a prompt engineering technique that encourages a large 
language model (LLM) to generate intermediate reasoning steps before arriving at a final answer. 
This approach improves the model’s ability to handle complex reasoning tasks, such as 
mathematical problem-solving, logical reasoning, and multi-step decision-making.

I went to the market and bought 10 apples. I gave 2 apples to 
the neighbor and 2 to the repairman. I then went and bought 5 

more apples and ate 1. How many apples did I remain with?

11

I went to the market and bought 10 apples. I gave 2 apples to 
the neighbor and 2 to the repairman. I then went and bought 5 

more apples and ate 1. How many apples did I remain with? 

Let's think step by step.

First, you started with 10 apples.You gave away 2 apples to the 
neighbor and 2 to the repairman, so you had 6 apples left.Then
you bought 5 more apples, so now you had 11 apples. Finally, 

you ate 1 apple, so you would remain with 10 apples.

CoT

Zero-shot
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Self-Consistency

• Self-consistency is an advanced prompting technique used to improve the 
reliability of responses generated by large language models (LLMs). Instead of 
relying on a single answer, self-consistency works by generating multiple 
reasoning paths and selecting the most frequent or consistent answer, reducing 
variability and improving accuracy in complex tasks.

Self-Consistency Improves Chain of Thought Reasoning in Language Models 73



Program-Aided Language Models

• Program-Aided Language 
Models (PALMs) integrate 
traditional language 
models with external 
program execution, 
allowing them to generate 
structured solutions by 
leveraging symbolic 
reasoning, code execution, 
or computational tools to 
enhance accuracy and 
reliability in complex 
problem-solving tasks.

PAL: Program-aided Language Models 74



Tree-of-Thought

• Tree-of-Thought (ToT) 
prompting is a reasoning 
technique for large 
language models that 
structures problem-
solving as a tree-like 
process, where multiple 
reasoning paths are 
explored, evaluated, and 
refined to improve 
decision-making and 
complex problem-solving 
accuracy.

https://medium.com/@nexgenarch/5-advanced-prompting-techniques-to-ace-chatgpt-ac750aa2e01e

Tree of Thoughts: Deliberate Problem Solving with Large Language Models 75

https://medium.com/@nexgenarch/5-advanced-prompting-techniques-to-ace-chatgpt-ac750aa2e01e


Structured Outputs

• Ollama supports structured outputs making it possible to constrain a model’s 
output to a specific format defined by a JSON schema.

Python Code

Output

https://ollama.com/blog/structured-outputs 76



Structured Outputs

• Specify the format requirements directly in the prompt.
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OpenAI API

• The OpenAI Python library provides convenient access to the OpenAI REST API 
from any Python 3.8+ application.

https://github.com/openai/openai-python
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Large Reasoning Models

• Train-time Compute
• Test-time Compute
• Test-time Compute Scaling Laws
• Deepseek-R1
• Reasoning Example
• Distillation
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Train-time Compute

• To increase the performance of LLMs during pre-training, developers often 
increase the size of the:
• Model (# of parameters)
• Dataset (# of tokens)
• Compute (# of FLOPs)

https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-reasoning-llms
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Test-time Compute

• The paradigm shift from scaling train-time compute to scaling test-time compute.

https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-reasoning-llms
81



Test-time Compute Scaling Laws

• Test-time compute might actually follow the same trend as scaling train-time 
compute

https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-reasoning-llms
82



Deepseek-R1

• DeepSeek-R1 is an open-source large 
language model developed by the 
Chinese AI company DeepSeek, designed 
to excel in tasks requiring logical 
inference, mathematical reasoning, and 
real-time problem-solving. 

DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning

https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-reasoning-llms
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Reasoning Example
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Distillation

• Distillation is a model compression technique where a smaller student model 
learns to replicate the behavior of a larger teacher model by mimicking its 
outputs.

https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-reasoning-llms
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Agent

• LLM-based Agent
• Tools: Tool-Use 
• Tools: Function Calling
• Tools: Model Context Protocol
• Planning: ReAct
• Planning: Reflexion
• Application: Retrieval-Augmented Generation (RAG)
• Application: Computer-Using Agent
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LLM-based Agent

• An LLM-based agent is an AI system that integrates memory, planning, action, 
and tool-use modules to autonomously process information, make decisions, and 
interact with users or environments efficiently.

https://lilianweng.github.io/posts/2023-06-23-agent/ 87



Tools: Tool-Use 

• Tool use in LLMs refers to their ability to integrate external tools, APIs, or plugins 
to enhance reasoning, retrieve information, execute actions, and interact with 
external systems beyond their pretrained knowledge.

Tool Learning with Foundation Models

Toolformer: Language Models Can Teach Themselves to Use Tools 88



Tools: Function Calling

• Function 
calling provides a 
powerful and flexible 
way for OpenAI 
models to interface 
with your code or 
external services. This 
guide will explain how 
to connect the models 
to your own custom 
code to fetch data or 
take action.

https://platform.openai.com/docs/guides/function-calling 89



Tools: Model Context Protocol

• MCP is an open protocol that 
standardizes how applications 
provide context to LLMs.

• MCP provides a standardized way 
to connect AI models to different 
data sources and tools.

https://x.com/akshay_pachaar/status/1900170408038642058 90



Planning: ReAct

• ReAct is a general paradigm that combines reasoning and acting with LLMs.

ReAct: Synergizing Reasoning and Acting in Language Models
91



Planning: Reflexion

• Reflexion converts feedback (either free-form language or scalar) from the 
environment into linguistic feedback, also referred to as self-reflection, which is 
provided as context for an LLM agent in the next episode.

Reflexion: Language Agents with Verbal Reinforcement Learning 92



Application: Retrieval-Augmented Generation (RAG)

• Retrieval-Augmented Generation (RAG) enhances language models by retrieving 
relevant external information from a knowledge source to improve response 
accuracy, factuality, and contextual awareness.

https://blog.roboflow.com/what-is-retrieval-augmented-generation/ 93



Application: Computer-Using Agent

OSWorld: Benchmarking Multimodal Agents for Open-Ended Tasks in Real Computer Environments

• A computing agent is an autonomous system that processes data, executes 
tasks, and makes decisions using computational resources, integrating AI 
models, planning, and tool-use capabilities.
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Application: Social Agent

• A social agent is an AI-driven 
system designed to interact, 
communicate, and 
collaborate with humans or 
other agents using natural 
language, social cues, and 
adaptive behaviors.

A Survey on Large Language Model-Based Social Agents in Game-Theoretic Scenarios
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Multi-Agents

• LLM-based Multi-Agents
• Task Solving: ChatDev
• Simulation: Generative Agents
• MetaGPT
• CAMEL
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LLM-based Multi-Agents

• Large Language Model-
based multi-agents are AI 
systems where multiple 
LLM-powered agents 
collaborate, communicate, 
and coordinate tasks 
autonomously, leveraging 
specialized roles, memory, 
planning, and tool use for 
complex problem-solving.

Large Language Model based Multi-Agents: A Survey of Progress and Challenges 97



Task Solving: ChatDev

• ChatDev stands as a virtual 
software company that operates 
through various intelligent 
agents holding different roles, 
including Chief Executive Officer, 
Chief Product Officer, Chief 
Technology Officer, Programmer, 
Reviewer, Tester, Art designer.

https://github.com/OpenBMB/ChatDev
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Simulation: Generative Agents

• Generative agents are AI systems that simulate human-like behaviors by 
integrating memory, planning, and adaptive generation to interact autonomously 
in dynamic environments.

Generative Agents: Interactive Simulacra of Human Behavior 99



MetaGPT: The Multi-Agent Framework

• MetaGPT is a multi-agent framework that structures large language models 
(LLMs) into specialized roles, enabling collaborative problem-solving, task 
decomposition, and efficient execution in complex workflows.

https://github.com/geekan/MetaGPT 100



CAMEL

• CAMEL (Communicative Agents for Multi-agent Reinforcement Learning) is a 
framework that enables large language models (LLMs) to collaborate through 
role-based communication, enhancing coordination and problem-solving in multi-
agent interactions.

https://github.com/camel-ai/camel 101



Conclusion

• We first discussed how to train large 

language models, including pretraining 

data preparation, tokenization, model 

architecture, instruction fine-tuning, RLHF, 

and how to evaluate the performance of 

large language models.

• Then, we explored prompt engineering 

techniques, such as few-shot prompting 

and chain-of-thought (CoT).

• Next, we introduced the currently popular 

large reasoning models and observed the 

potential of reinforcement learning.

• Finally, we presented LLM-based agents 

and multi-agent systems, along with their 

related applications.

            

                           

           
           

      
    

           

            

          
       

           
                

      

         

                

           

     

      

      

       

102



Course Project: Survey on Large Language Models (LLMs)

• Conduct a comprehensive survey on any topic related to large language models (LLMs). 
• Each group will consist of 2-3 people to write a survey, with a maximum of 3 members. 
• Each group will give a 10-15 minute presentation in the final class.
• All surveys must be submitted to xiachongfeng1996@gmail.com by April 21.

• Requirements:
• Paper Format: The survey must be written using the ARR LaTeX/Word template, with a main text 

of no less than 8 pages (excluding references and appendices).
• https://github.com/acl-org/acl-style-files

• Independent Research: The survey must be based on original and independent research 
conducted by the team. Proper citations and references are required.

• Academic Integrity: Any form of academic misconduct, including plagiarism, excessive reliance on 
AI-generated content, or improper paraphrasing, is strictly prohibited. Violations will result in 
severe penalties, including project rejection and possible academic disciplinary action.
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Thanks!
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