

Natural Language Processing Group, The University of Hong Kong

Hands-on Large Language Models

Xiachong Feng, Lingpeng Kong

20/03/2025

Outline

- Pretraining Data
- Tokenization
- Transformer
- Pre-training
- Instruction-tuning
- Reinforcement Learning from Human Feedback
- Evaluation
- Prompt Engineering
- Large Reasoning Models
- Agent
- Multi-agents
- Conclusion

Pretraining Data

- 1. Common Crawl
- 2. FineWeb
- 3. Code Pretraining Data
- 4. Math Pretraining Data

- Common Crawl is a non–profit founded in 2007.
- Common crawl is an open repository of web crawl data that can be accessed and analyzed by researchers, data scientists, and developers.
 - Over 250 billion pages spanning 18 years.
 - 3–5 billion new pages added each month.

Dataset	Quantity (tokens)	Weight in training mix	Epochs elapsed when training for 300B tokens
Common Crawl (filtered)	410 billion	60%	0.44
WebText2	19 billion	22%	2.9
Books1	12 billion	8%	1.9
Books2	55 billion	8%	0.43
Wikipedia	3 billion	3%	3.4

Table 2.2: Datasets used to train <u>GPT-3</u> "Weight in training mix" refers to the fraction of examples during training that are drawn from a given dataset, which we intentionally do not make proportional to the size of the dataset. As a result, when we train for 300 billion tokens, some datasets are seen up to 3.4 times during training while other datasets are seen less than once.

Accessing the Data

Crawl data is free to access by anyone from anywhere.

The data is hosted by **Amazon Web Services' Open Data Sets Sponsorships** program on the bucket s3://commoncrawl/, located in the US-East-1 (Northern Virginia) AWS Region.

Common Crawl February 2025 Crawl Archive (CC-MAIN-2025-08)

The February 2025 crawl archive contains 2.67 billion pages, see the announcement for details.

Data Size and File Listings

Data Type	File List	#Files	Total Size Compressed (TiB)
Segments	segment.paths.gz	100	
WARC	warc.paths.gz	90000	82.17
WAT	wat.paths.gz	90000	18.98
WET	wet.paths.gz	90000	7.40
Robots.txt files	robotstxt.paths.gz	90000	0.15
Non-200 responses	non200responses.paths.gz	90000	3.09
URL index files	<u>cc-index.paths.gz</u>	302	0.20
Columnar URL index files	cc-index-table.paths.gz	900	0.23

https://commoncrawl.org/get-started

https://data.commoncrawl.org/crawl-data/CC-MAIN-2025-08/index.html

- WARC files which store the raw crawl data
- WAT files which store computed metadata for the data stored in the WARC
- WET files which store extracted plaintext from the data stored in the WARC

FineWeb

- FineWeb, a new, large-scale (**15-trillion tokens, 44TB disk space**) dataset for LLM pretraining.
- FineWeb is derived from **96 CommonCrawl** snapshots and produces betterperforming LLMs than other open pretraining datasets.

iduset (108) Jefault ×				spirt (1) train			
▶ The full dataset viewer is not available (click to	read why). Only show	ing a pre	view of the rows.				
text string	id string	dump string	url string		date string	<pre>file_path string</pre>	language string
How AP reported in all formats from tornado- stricken regionsMarch 8, 2012 When the first	<urn:uuid:d66bc6fe- 8477-4adf-b430</urn:uuid:d66bc6fe- 	CC- MAIN	http://%20jwashi Release/2012/How	ngton@ap.org/Content/Press- -AP-reported-in-all-formats-from	2013-05- 18T05:48:54Z	s3://commoncrawl/crawl-data/CC- MAIN-2013	en
Did you know you have two little yellow, nine-volt- battery-sized adrenal glands in your body, just_	<urn:uuid:803e14c3- dc2e-43d6-b75d</urn:uuid:803e14c3- 	CC- MAIN	http://1000aweso adrenaline/	http://1000awesomethings.com/2012/09/24/934- adrenaline/		s3://commoncrawl/crawl-data/CC- MAIN-2013	en
Car Wash For Clara! Now is your chance to help! 2 /ear old Clara Woodward has Cancer! Clara can't sa…	<urn:uuid:ac1bbfff- 9519-4967-9c64</urn:uuid:ac1bbfff- 	CC- MAIN	http://1027kord.com/car-wash-for-clara/		2013-05- 18T06:49:55Z	s3://commoncrawl/crawl-data/CC- MAIN-2013	en
isteners Get Sky-high View of Missoula From Hot Air Balloons On Friday, June 1, during the…	<urn:uuid:c1445c58- b111-4c4e-badd</urn:uuid:c1445c58- 	CC- MAIN	http://1075zoofm.com/listeners-get-sky-high-view- of-missoula-from-hot-air-balloons/		2013-05 18T06:25:202	s3://commoncrawl/crawl-data/CC- MAIN-2013	en
.og In Please enter your ECode to log in. Forgotten your eCode? If you created your login but do not…	<urn:uuid:e5829f7d- b944-4468-9573</urn:uuid:e5829f7d- 	CC- MAIN	http://1105govin eevent/public/My	foevents.com/enterprisearchitectur Briefcasef671.html?	2013-05- 18T05:27:01Z	s3://commoncrawl/crawl-dela/CC- MAIN-2013	en
spotlight provides a convenient rechargeable LED light for work play and everyday life. choose from	<urn:uuid:6bfca20f- ea67-41ba-b995</urn:uuid:6bfca20f- 	CC- MAIN	http://12vspotlight.com/		2013-05- 18T06:49:17Z	s3://commoncrawl/crawl-data/CC- MAIN-2013	en
K-State put themselves in sole position of first place in the Big 12 with their 79-70 over Iowa…	<urn:uuid:dc9d9fd8- 5a21-4ab0-bbb2</urn:uuid:dc9d9fd8- 	CC- MAIN	http://1350kman.	com/k-state-now-in-top-10/	2013-05- 18T07:19:46Z	s3://commoncrawl/crawl-data/CC- MAIN-2013	en
ive Reasons I Love Boston 1. The water. The tlantic Ocean, as deep and true as denim, so blue…	<urn:uuid:64f968bf- 14bc-48bd-a1bb</urn:uuid:64f968bf- 	CC- MAIN	http://17andbaki love-boston/?…	ng.com/2012/09/30/five-reasons-i-	2013-05- 18T07:25:34Z	s3://commoncrawl/crawl-data/CC- MAIN-2013	en
RIBE CHIEF TRIS DAZZLES AT DISH, FLUBS IN FIELD IN IXTH STRAIGHT TIGER WIN By Calvin J. Butterworth…	<urn:uuid:2c08e1d4- 9706-41d8-84dc</urn:uuid:2c08e1d4- 	CC- MAIN	http://1924andyo archive.html	uarethere.blogspot.com/2009_07_01_	2013-05- 18T05:54:12Z	s3://commoncrawl/crawl-data/CC- MAIN-2013	en
Tommy Pi - Trance Experience Written by Paul ommy Pi started DJing at small private parties at…	<urn:uuid:7e6216ca- 0a01-498d-85f7</urn:uuid:7e6216ca- 	CC- MAIN	http://1mix.co.u experience.html	k/trance-shows/tommy-pi-trance-	2013-05- 18T05:54:17Z	s3://commoncrawl/crawl-data/CC- MAIN-2013	en
hen I found out we would be getting a PopATot for eview I was excited! I knew before we even had it	<urn:uuid:0868921d- 8323-4a3d-b012</urn:uuid:0868921d- 	CC- MAIN	http://1plus1plu /10/grand-finale	<pre>slequals1reviews.blogspot.com/2009 -4-popatot.html?</pre>	2013-05- 18T06:19:38Z	s3://commoncrawl/crawl-data/CC- MAIN-2013	en
2012 Indy Info It seems we can't find what you're looking for. Perhaps searching can help. giving it…	<urn:uuid:b7319126- 5fdb-4ae0-a17b</urn:uuid:b7319126- 	CC- MAIN	http://2012indyi	nfo.com/category/sfhs/	2013-05- 18T08:07:40Z	s3://commoncrawl/crawl-data/CC- MAIN-2013	en

https://huggingface.co/datasets/HuggingFaceFW/fineweb

How AP reported in all formats from tornado-stricken regions March 8, 2012 When the first serious bout of tornadoes of 2012 blew through middle America in the middle of the night, they touched down in places hours from any AP bureau. Our closest video journalist was Chicago-based Robert Ray, who dropped his plans to travel to Georgia for Super Tuesday, booked several flights to the cities closest to the strikes and headed for the airport. He'd decide once there which flight to take. He never got on board a plane. Instead, he ended up driving toward Harrisburg, Ill., where initial reports suggested a town was destroyed. That decision turned out to be a lucky break for the AP. Twice.

FineWeb Recipe

https://huggingface.co/spaces/HuggingFaceFW/blogpost-fineweb-v1

FineWeb Recipe: Text Extraction

- WARC (Web ARChive format) files contain the raw data from the crawl, including the full page HTML and request metadata.
- WET (WARC Encapsulated Text) files provide a text only version of those websites.
- Extract the text content from the WARC files using the trafilatura library

https://huggingface.co/spaces/HuggingFaceFW/blogpost-fineweb-v1

FineWeb Recipe: Base filtering

- Filtering is an important part of the curation process.
- It consists in removing part of the data (be it words, lines, or even full documents) that lowers the performance of the model
 - Applied URL filtering using a blocklist (https://dsi.ut-capitole.fr/blacklists/) to remove adult content
 - Applied a **fastText language classifier** to keep only English text with a score ≥ 0.65
 - Applied quality and repetition filters from MassiveText -

•••

import fasttext
from huggingface_hub import hf_hub_download

model_path = hf_hub_download(repo_id="facebook/fasttextlanguage-identification", filename="model.bin") model = fasttext.load_model(model_path) model.predict("Hello, world!") # (('__label__eng_Latn',), array([0.81148803]))

model.predict("Hello, world!", k=5)

(('__label__eng_Latn', '__label__vie_Latn', '__label__nld_Latn', '__label__pol_Latn', '__label__deu_Latn'), # array([0.61224753, 0.21323682, 0.09696738, 0.01359863, 0.01319415])) **Quality Filtering (***MassiveWeb* **only)** The vast majority of text found on the web is of insufficient quality to be useful for language model training. For example, many web pages contain primarily automatically generated content, or text that is not intended for human consumption (such as keywords for search-engine optimisation). Much of the web also comprises social media content, which can variously lack context, coherence, or substance. To remove low-quality data while minimising potential for bias, we apply a number of simple, easily understood heuristic filters: we remove any document that does not contain between 50 and 100,000 words, or whose mean word length is outside the range of 3 to 10 characters; we remove any document with a symbol-to-word ratio greater than 0.1 for either the hash symbol or the ellipsis; and we remove any document with more than 90% of lines starting with a bullet point, or more than 30% ending with an ellipsis. We also require that 80% of words in a document contain at least one alphabetic character, and apply a "stop word" filter, to remove documents that do not contain at least two of the following English words: *the, be, to, of, and, that, have, with*; this adequately deals with ostensibly English documents that contain no coherent English text.

Repetition Removal (*MassiveWeb* **only)** Another indicator of poor quality data is excessive repetition of certain words or phrases within a document. Qualitatively we observe that excessive repetition is often linked with uninformative content. Furthermore a well-studied failure mode of current language models is to repeat themselves during sampling (Holtzman et al., 2019) which may be partially attributed to repetitous training data.

Scaling Language Models: Methods, Analysis & Insights from Training Gopher

FineWeb Recipe: Deduplication

- Methods to deduplicate datasets attempt to identify and remove redundant/repeated data from the dataset.
- Removing these duplicates (deduplicating) has been correlated with improvements in model performance^[1] and a reduction in memorization of pretraining data^[2], which might allow for better generalization.
- Additionally, the performance uplift obtained through deduplication can be equated to increased training efficiency: by removing duplicated content, a model can reach the same performance level with fewer training iterations – or equivalently, for a given number of training tokens, a model will have seen more diverse data.^{[3][4]}

- [1] Deduplicating Training Data Makes Language Models Better
- [2] Quantifying Memorization Across Neural Language Models
- [3] Scaling Data-Constrained Language Models
- [4] Scaling Laws and Interpretability of Learning from Repeated Data

FineWeb Recipe: MinHash Deduplication

Shingle	h1	h ₂	h ₃	h4	
'l like"	42	13	25	7	
'like to"	18	41	10	31	
'to eat"	29	33	17	21	
'eat apples"	16	22	35	14	
'apples and"	8	37	29	28	
'and bananas"	13	19	32	24	
'eat bananas"	44	16	20	8	
'bananas and"	24	30	15	19	
'and apples"	11	26	39	9	
'I hate"	32	45	6	40	
'hate to"	19	14	42	36	
'eat vegetables"	38	10	31	27	
'vegetables and"	27	20	12	33	
and fruits"	15	34	23	17	

Pretraining Data: Code

DeepSeek-Coder

We collect public repositories created before February 2023 on GitHub and retain only 87 programming languages, as listed in Table 1. To reduce the amount of data to be processed, we apply filtering rules similar to those used in the StarCoder project (Li et al., 2023) to preliminarily filter out lower-quality code. By applying these filtering rules, we reduce the total amount of data to only 32.8% of its original size. To make the paper self-contained, we briefly describe the filter rules used in the StarCoder Data project:

Firstly, we filter out files with an average line length exceeding 100 characters or a maximum line length surpassing 1000 characters. Additionally, we remove files with fewer than 25% alphabetic characters. Except for the XSLT programming language, we further filter out files where the string "<?xml version=" appeared in the first 100 characters. For HTML files, we consider the ratio of visible text to HTML code. We retain files where the visible text constitutes at least 20% of the code and is no less than 100 characters. For JSON and YAML files, which typically contain more data, we only keep files that have a character count ranging from 50 to 5000 characters. This effectively removes most data-heavy files.

Github 87 Programming Language

Code-specific Rulebased Filtering

Pretraining Data: Math (Qwen Math Corpus v1)

- Data recall
 - Recall of mathematical data from web sources, such as Common Crawl, to escalate the quantity of data
 - Train a FastText classifier to classify mathematical texts.
 - Leverage meta-information, such as URLs, to expand the data pool for mathematical data retrieval.
- Deduplication
 - MinHash is employed to filter out similar mathematical documents.
- Filtering
 - Language-model-based filtering technique to further curate the dataset.
- Data synthesis
 - Employ the Qwen2-72B-Instruct model to synthesize a large amount of mathematical pre-training corpus
- Optimization of the data mixture
 - Conduct ablation studies on data mixture using a small math-specific language model.

Qwen2.5-Math Technical Report: Toward Mathematical Expert Model via Self-Improvement

Tokenization

- 1. What is tokenization?
- 2. Word-level Tokenization
- 3. Byte Pair Encoding (BPE)
- 4. Quirks of LLM Tokenization
- 5. Byte-Level Large Language Model

Tokenization

Tokenization is the process of splitting text into smaller units (tokens) to enable efficient processing and analysis in Natural Language Processing.

Basic: Word-Level Tokenization

• Word-level tokenization splits text into individual words based on spaces and punctuation, making it suitable for languages with clear word boundaries like English.

HKU is dedicated to empowering women for a brighter future. Fostering diversity, inclusivity, and gender equality is crucial for our success. Let's honour women's achievements and work together towards a world where they can thrive and lead

Original Document

Byte Pair Encoding (BPE)

 Byte Pair Encoding (BPE) is a subword tokenization algorithm that iteratively merges the most frequent adjacent character pairs to create a vocabulary of subwords, helping models handle rare words and out-of-vocabulary (OOV) words efficiently.

Byte Pair Encoding (BPE)

- Two words in the dataset: *low* and *lowest*
- Initialization
 - Start with each character in the corpus as a separate token
 - Vocabulary: {l, o, w, e, s, t, </w>}
- Tokenization at Character Level:
 - "low" \rightarrow low </w>
 - "lowest" \rightarrow l o w e s t </w>
- Counting Pair Frequencies
 - Pair lo appears twice;
 - Pair **o w** appears **twice**;
 - Pair w </w> appears once;
 - Pair e s appears once;
 - Pair **s t** appears **once**: in "lowest".
- Merge the Most Frequent Pair:
 - "low" \rightarrow I ow </w>
 - "lowest" → l ow e s t </w>
 - Vocabulary: {l, o, w, e, s, t, </w>, ow}

 Recount Pair Frequencies: Pair I ow appears twice; Pair e s appears once; Pair s t appears once. Merge the Next Frequent Pair:	Merge Rules	o w → ow l ow> low e s → es es t → est
 "low" → low "lowest" → low e s t Vocabulary: {l, o, w, e, s, t, , ow low} 	Vocab	{I, o, w, e, s, t, , ow, low, es,
Merge the Next Frequent Pair:		est}
 "lowest" → low es t Vocabulary: {l. o. w. e. s. t. . 	Apply B	PE for New Word
ow, low, es} Merge the Final Pair: • "lowest" \rightarrow low est • Vocabulary: {l, o, w, e, s, t, , ow, low, es, est} Final Vocabulary: • Vocabulary: {l, o, w, e, s, t, , ow, low, es, est} • "low" \rightarrow low • "lowest" \rightarrow low est	lower ↓ Iower ↓ Iower<	<pre> hew word </pre>

<u>https://huggingface.co/learn/nlp-course/chapter6/5</u> https://vizuara.substack.com/p/understanding-byte-pair-encoding

•

•

Note1: Byte-level Byte Pair Encoding (BPE)

- A base vocabulary that includes all possible base characters can be quite large if *e.g.* all unicode characters are considered as base characters.
- To have a better base vocabulary, GPT-2 uses <u>bytes</u> as the base vocabulary, which is a clever trick to force the base vocabulary to be of size 256 while ensuring that every base character is included in the vocabulary.

•••

>>> list("香港大学 l (The University of Hong Kong!)".encode("utf-8")) [233, 166, 153, 230, 184, 175, 229, 164, 167, 229, 173, 166, 32, 240, 159, 145, 139, 32, 40, 84, 104, 101, 32, 85, 110, 105, 118, 101, 114, 115, 105, 116, 121, 32, 111, 102, 32, 72, 111, 110, 103, 32, 75, 111, 110, 103, 33, 41] 🛑 🔴 🔵

>>> list("香港大学".encode("utf-8")) [233, 166, 153, 230, 184, 175, 229, 164, 167, 229, 173, 166]

Byte sequence

https://huggingface.co/docs/transformers/tokenizer_summary#byte-level-bpe

Note2: Independent Module Separate from LLM

- Tokenizer is a completely separate, independent module from the LLM. It has its own training dataset of text (which could be different from that of the LLM), on which you train the vocabulary using the Byte Pair Encoding (BPE) algorithm. It then translates back and forth between raw text and sequences of tokens.
- The LLM later only ever sees the tokens and never directly deals with any text.

Note3: Visualization Tool for Tokenization

Fiktokenize	ər			cl100k_base	\$
The University of Ho 香港大学	ong Kong		Token count 75		
<pre>def decode(ids): # given ids (lis text_bytes = b"' text = text_byte return text</pre>	st of integers), return Pyt ".join(vocab[idx] for idx i es.decode("utf-8", errors="	chon string in ids) 'replace")	The University of Hong Ko 香港大学	ng	
今日天氣唔錯。		6	<pre>def decode(ids): # given ids (list of ng</pre>	integers), return Python	stri
			<pre>text_bytes = b"".join text = text_bytes.dec ""</pre>	<pre>(vocab[idx] for idx in i ode("utf-8", errors="rep</pre>	ds) lac
h	ello <mark>world</mark>		return text		
h	elloworld		今日天氣唔錯。		
h	ello <mark>.</mark> world		791, 3907, 315, 19730, 18 107, 27384, 48864, 271, 7 74, 2728, 14483, 320, 163	711, 271, 46065, 247, 35 55, 17322, 44548, 997, 2 8, 315, 26864, 705, 471,	086, 62, 6 1332
			5, 925, 198, 262, 1495, 1 3832, 21135, 11858, 60, 3 2, 1495, 284, 1495, 12807 98, 6103, 429, 8319, 1158	2807, 284, 293, 70455, 6 69, 7335, 304, 14483, 34 , 16301, 446, 4867, 12, , 262, 471, 1495, 271, 3	115, 0, 26 23, 4

9080, 36827, 30320, 96, 84150, 242, 91779, 107, 1811

Minimal Implementation

••••

```
def get_stats(ids, counts=None):
```

Given a list of integers, return a dictionary of counts of consecutive pairs Example: $[1, 2, 3, 1, 2] \rightarrow \{(1, 2): 2, (2, 3): 1, (3, 1): 1\}$ Optionally allows to update an existing dictionary of counts ""

counts = {} if counts is None else counts
for pair in zip(ids, ids[1:]): # iterate consecutive elements
 counts[pair] = counts.get(pair, 0) + 1
return counts

•••

```
def merge(ids, pair, idx):
    """
    In the list of integers (ids), replace all consecutive occurrences
    of pair with the new integer token idx
    Example: ids=[1, 2, 3, 1, 2], pair=(1, 2), idx=4 -> [4, 3, 4]
    """
    newids = []
    i = 0
    while i < len(ids):
        # if not at the very last position AND the pair matches, replace it
        if ids[i] == pair[0] and i < len(ids) - 1 and ids[i+1] == pair[1]:
            newids.append(idx)
            i += 2
        else:
            newids.append(ids[i])
            i += 1
    return newids</pre>
```

•••

```
def train(text, vocab_size, verbose=False):
    assert vocab_size >= 256
    num_merges = vocab_size - 256
```

input text preprocessing

text_bytes = text.encode("utf-8") # raw bytes ids = list(text_bytes) # list of integers in range 0..255

iteratively merge the most common pairs to create new tokens
merges = {} # (int, int) -> int

vocab = {idx: bytes([idx]) for idx in range(256)} # int ->
ytes

for i in range(num_merges):

count up the number of times every consecutive pair ppears

```
stats = get_stats(ids)
# find the pair with the highest count
pair = max(stats, key=stats.get)
# mint a new token: assign it the next available id
idx = 256 + i
# replace all occurrences of pair in ids with idx
ids = merge(ids, pair, idx)
# save the merge
merges[pair] = idx
vocab[idx] = vocab[pair[0]] + vocab[pair[1]]
print(f"merge {i+1}/{num_merges}: {pair} -> {idx}
({vocab[idx]}) had {stats[pair]} occurrences")
```


def train(self, text, vocab_size, verbose=False):
 assert vocab_size >= 256
 num_merges = vocab_size - 256

input text preprocessing text_bytes = text.encode("utf-8") # raw bytes ids = list(text_bytes) # list of integers in range 0..255

iteratively merge the most common pairs to create new tokens
merges = {} # (int, int) -> int
vocab = {idx: bytes([idx]) for idx in range(256)} # int ->

bytes

for i in range(num_merges):

count up the number of times every consecutive pair
appears

stats = get_stats(ids)

find the pair with the highest count

pair = max(stats, key=stats.get)

mint a new token: assign it the next available id idx = 256 + i

replace all occurrences of pair in ids with idx ids = merge(ids, pair, idx)

save the merge

merges[pair] = idx

vocab[idx] = vocab[pair[0]] + vocab[pair[1]]

prints

Select the code

if verbose: print(

f"merge {i+1}/{num_merges}: {pair} -> {idx} ({vocab
 [idx]}) had {stats[pair]} occurrences")

save class variables
self.merges = merges # used in encode()

2 Ask the question

```
bpe.py
explain this code.
Let me explain this line of code in English.
The line vocab[idx] = vocab[pair[0]] + vocab[pair[1]] is creating a new
vocabulary entry by concatenating two existing vocabulary items. This is a key
part of the BPE (Byte Pair Encoding) algorithm.
Let's break it down:
1. vocab is a dictionary that maps token IDs to their byte representations. For
  example:
   🗬 python
      vocab = {
           97: b'a', # byte representation of 'a'
           98: b'b',
                         # byte representation of 'b'
           256: b'aa' # a merged token
2. idx is the new token ID being created (usually starting from 256, as 0-255
  are reserved for basic bytes)
3. pair[0] and pair[1] are the IDs of the two tokens being merged
4. vocab [pair [0]] gets the byte representation of the first token
```

vocab[pair[1]] gets the byte representation of the second token

5. The + operator concatenates these byte sequences

For example, if:

- pair = (97, 97) (representing two 'a' characters)
- idx = 256
- vocab[97] = b'a'
- Then vocab[256] = b'a' + b'a' will result in vocab[256] = b'aa'

This is how the BPE algorithm builds up its vocabulary of larger tokens from smaller ones. Each new token is created by concatenating the byte sequences of two existing tokens that frequently appear together in the training text.

③ Explain and Answer

https://www.cursor.com/

Minimal Implementation

•••

def decode(ids):

given ids (list of integers), return Python string text_bytes = b"".join(vocab[idx] for idx in ids) text = text_bytes.decode("utf-8", errors="replace") return text

def encode(text):

given a string text, return the token ids
text_bytes = text.encode("utf-8") # raw bytes
ids = list(text_bytes) # list of integers in range 0..255
while len(ids) >= 2:

find the pair with the lowest merge index

stats = get_stats(ids)

This is different from the training phase where we chose the most frequent pairs. During encoding, we want to apply the merges in the same order they were learned, so we choose the pair with the lowest merge index.

The use of float("inf") ensures that pairs that weren't in the original training merges will never be selected, as they'll always have an "infinite" merge index.

pair = min(stats, key=lambda p: merges.get(p, float("inf")))

subile: If there are no more merges available, the key will # result in an inf for every single pair, and the min will be # just the first pair in the list, arbitrarily

we can detect this terminating case by a membership check

if pair not in merges:

break # nothing else can be merged anymore
otherwise let's merge the best pair (lowest merge index)
idx = merges[pair]
ids = merge(ids, pair, idx)

return ids

explain this code

Let me explain this line of code in English.

The line pair = min(stats, key=lambda p: self.merges.get(p, float("i nf"))) is finding the pair of tokens that has the lowest merge index in the previously learned merges. This is used during the encoding process of BPE. Let's break it down:

- 1. stats is a dictionary containing pairs of tokens and their frequencies in the current text being encoded
- min() is finding the pair with the smallest value according to the key function
- 3. lambda p: self.merges.get(p, float("inf")) is the key function that determines how to compare pairs:
- p is each pair from the stats dictionary
- self.merges.get(p, float("inf")) looks up the merge index for the pair
- If the pair isn't in self.merges, it returns float("inf") (infinity)

For example, if we have:

🕏 python

stats = {(1, 2): 3, (2, 3): 2} # Current pairs and their freque
self.merges = {

```
(1, 2): 256, # This pair was merged first
(2, 3): 257 # This pair was merged second
```

The line will return (1, 2) because:

• For pair (1, 2): self.merges.get((1, 2)) returns 256

- For pair (2, 3): self.merges.get((2, 3)) returns 257
- 256 is less than 257, so (1, 2) is chosen

This is different from the training phase where we chose the most frequent pairs. During encoding, we want to apply the merges in the same order they were learned, so we choose the pair with the lowest merge index.

The use of float("inf") ensures that pairs that weren't in the original training merges will never be selected, as they'll always have an "infinite"

Quirks of LLM Tokenization

- Why can't LLM spell words? Tokenization.
- Why can't LLM do super simple string processing tasks like reversing a string? Tokenization.
- Why is LLM worse at non-English languages (e.g. Japanese)? Tokenization.
- Why is LLM bad at simple arithmetic? **Tokenization**.
- Why did GPT-2 have more than necessary trouble coding in Python? Tokenization.
- Why did my LLM abruptly halt when it sees the string "<|endoftext|>"? Tokenization.
- What is this weird warning I get about a "trailing whitespace"? Tokenization.
- Why the LLM break if I ask it about "SolidGoldMagikarp"? Tokenization.
- Why should I prefer to use YAML over JSON with LLMs? Tokenization.
- Why is LLM not actually end-to-end language modeling? Tokenization.
- What is the real root of suffering? Tokenization.

Byte-level LLM: EvaByte

• EvaByte is the first open-source byte-level model without tokenization that yet matches the performance of modern tokenizer-based LMs.

EvaByte: Efficient Byte-level Language Models at Scale https://hkunlp.github.io/blog/2025/evabyte/

More Topics

- Regex patterns
- Tiktoken library
- Special tokens

Exercise

- https://github.com/k arpathy/minbpe
- https://github.com/k arpathy/minbpe/blo b/master/exercise.m d

https://www.youtube.com/watch?v=zduSFxRajkE&t=5399s

Transformer

- Transformer
- Attention Mechanism
- Multi-Head Attention
- Visualization
- Python Library
- HuggingFace Transformers
- Different Architectures

Transformer

- **Transformer Architecture** Introduced a model relying entirely on self-attention, removing recurrence (RNNs) and convolution.
- Self-Attention Mechanism Enabled parallel processing of words by attending to all positions in a sequence.
- **Multi-Head Attention** Allowed the model to capture multiple relationships between words simultaneously.
- **Positional Encoding** Injected sequence order information into the model, since Transformers lack recurrence.
- State-of-the-Art Results Achieved breakthrough performance in machine translation and laid the foundation for models like BERT & GPT.

Attention Mechanism

 Attention in Transformers is a mechanism that enables the model to focus on relevant parts of the input sequence by dynamically weighting token relationships, improving context understanding and long-range dependencies.

Multi-Head Attention

Scaled Dot-Product Attention

Multi-Head Attention Linear Concat Scaled Dot-Product Attention Linear Linear Linear Κ Q

•••

import torch import torch.nn as nn

class MultiHeadSelfAttention(nn.Module):

def __init__(self, embed_dim, num_heads):
 super().__init__()
 assert embed_dim % num_heads == 0, "Embedding dim must be

divisible by number of heads"

self.num_heads = num_heads
self.head_dim = embed_dim // num_heads

self.W_q = nn.Linear(embed_dim, embed_dim, bias=False)
self.W_k = nn.Linear(embed_dim, embed_dim, bias=False)
self.W_v = nn.Linear(embed_dim, embed_dim, bias=False)
self.W_out = nn.Linear(embed_dim, embed_dim, bias=False)

def forward(self, x):
 batch_size, seq_len, embed_dim = x.shape

Compute Q, K, V

Q = self.W_q(x).view(batch_size, seq_len, self.num_heads, self.head_dim).transpose(1, 2)

K = self.W_k(x).view(batch_size, seq_len, self.num_heads, self.head_dim).transpose(1, 2)

V = self.W_v(x).view(batch_size, seq_len, self.num_heads, self.head_dim).transpose(1, 2)

Scaled Dot-Product Attention

scores = torch.matmul(Q, K.transpose(-2, -1)) /
torch.sqrt(torch.tensor(self.head_dim, dtype=torch.float32))
 attention_weights = torch.softmax(scores, dim=-1)
 out = torch.matmul(attention_weights, V)

Merge heads and apply final linear layer
out = out.transpose(1, 2).contiguous().view(batch_size,
seq_len, embed_dim)
 return self.W out(out)

Generated by GPT-4o

Attention is All You Need

(give me the minimal code implementation of multi-head attention)

Visualization

Python Library

• There are already numerous tools available for quickly building various Transformer architectures.

Transformers provides thousands of pretrained models to perform tasks on different modalities such as text, vision, and audio.

These models can be applied on:

- 📝 Text, for tasks like text classification, information extraction, question answering, summarization, translation, and text generation, in over 100 languages.
- 🔄 Images, for tasks like image classification, object detection, and segmentation.
- 🗣 Audio, for tasks like speech recognition and audio classification.

https://github.com/huggingface/transformers

xFormers - Toolbox to Accelerate Research on Transformers

xFormers is:

- Customizable building blocks: Independent/customizable building blocks that can be used without boilerplate code. The components are domain-agnostic and xFormers is used by researchers in vision, NLP and more.
- Research first: xFormers contains bleeding-edge components, that are not yet available in mainstream libraries like PyTorch.
- Built with efficiency in mind: Because speed of iteration matters, components are as fast and memory-efficient as possible. xFormers contains its own CUDA kernels, but dispatches to other libraries when relevant.

https://github.com/facebookresearch/xformers

HuggingFace Transformers

Rugging Face Q Search models, datasets, users PM Models E Dat	tasets 🖺 Spaces 🏓 Posts 📖 Docs 🕼 Enterprise Pricing 🛁 🗌
Qwen/Qwen2.5-7B-Instruct □ ○ like 549 Follow Qwen 19.8k	
Text Generation 🙆 Transformers 😣 Safetensors 🕮 English qwen2 chat conversational	text-generation-inference Inference Endpoints arxiv:2309.00071
(
Model card HE Files and versions Community 16	: 🖏 Train - 🛷 Deploy - 🖵 Use this model -
∠ Edit mod	lel card
Qwen2.5-7B-Instruct	Downloads last month 1,588,483
C Qwen Chat	
Introduction	Saretensors Model size 1.628 params Tensor type Br16
	* Inference Providers NEW Store Together AI
Qwen2.5 is the latest series of Qwen large language models. For Qwen2.5, we release	ি Text Generation ○ Reset Chat Examples ✓
from 0.5 to 72 billion parameters. Owen 2.5 brings the following improvements upon	python
Owen2:	Your task is to implement bubble sort in Python.
	<pre>def bubble_sort(arr):</pre>
 Significantly more knowledge and has greatly improved capabilities in coding 	n = len(arr)
and mathematics, thanks to our specialized expert models in these domains.	<pre># Traverse through all array elements</pre>
	<pre>for i in range(n): # Last i elements are already in place</pre>
 Significant improvements in instruction following, generating long texts (over 	for i in range(0, n-i-1):
8K tokens), understanding structured data (e.g, tables), and generating	# Traverse the array from 0 to n-i-1
structured outputs especially JSON. More resilient to the diversity of system	# Swap if the element found is greater
prompts, enhancing role-play implementation and condition-setting for	# than the next element

•••

<pre>from transformers import AutoModelForCausalLM, AutoTokenizer</pre>
<pre>model_name = "Qwen/Qwen2.5-7B-Instruct"</pre>
<pre>model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype="auto", device_map="auto") tokenizer = AutoTokenizer.from_pretrained(model_name)</pre>
prompt = "Give me a short introduction to large language model."
<pre>messages = [{"role": "system", "content": "You are Qwen, created by Alibaba Cloud. You are a helpful assistant."}, {"role": "user", "content": prompt}</pre>
<pre>J text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)</pre>
<pre>model_inputs = tokenizer([text], return_tensors="pt").to(model.device)</pre>
<pre>generated_ids = model.generate(**model_inputs, max_new_tokens=512) generated_ids = [</pre>
<pre>generated_tos = [output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)]</pre>
<pre>response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)</pre>

Different Architectures

https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-mamba-and-state https://www.rwkv.com/

Pretraining

- Training a Neural Network
- Traditional Training vs Pretraining
- Core Implementation
- NIVIDIA GPU
- Memory Usage
- Pretraining Optimization
- Lingua
Training a Neural Network

- **Prepare Data** Collect, preprocess, and split data into training, validation, and test sets.
- Define Model Choose a neural network architecture (e.g., MLP, CNN, Transformer) and initialize parameters.
- Select Loss Function & Optimizer Define a loss function (e.g., Cross-Entropy, MSE) and an optimizer (e.g., SGD, Adam).
- **Train the Model** Iterate over multiple epochs, performing forward propagation, loss computation, and backpropagation to update weights.
- **Evaluate** Assess model performance on validation/test data.

Deep Dive into LLMs like ChatGPT, Andrej Karpathy

Traditional Training vs Pretraining

Feature	Traditional Training	Pretraining
Objective	Learn <mark>task-specific patterns</mark> from scratch	Learn general representations or features
Dataset	Labeled task-specific dataset	Large, diverse, unlabeled (self-supervised)
Training TimeShorter (depends on dataset size)		Longer (days to weeks to months)
Generalization Low (trained for a specific task only)		High (can be adapted to many tasks)
Fine-tuning? No fine-tuning, trained end-to-end		Yes, adapted to downstream tasks No, Zero-shot prompting

Core Implementation

Start Training

 NVIDIA GPUs are highperformance graphics processing units designed for computing tasks such as gaming, AI, deep learning, and scientific simulations, offering powerful parallel

H100

NVIDIA A100 TENSOR CORE GPU SPECIFICATIONS (SXM4 AND PCIE FORM FACTORS)

A100 40GB PCle	A100 80GB PCle	A100 40GB SXM	A100 80GB SXM
	9.7 TF	LOPS	
	19.5 T	FLOPS	
	19.5 T	FLOPS	
	156 TFLOPS	312 TFLOPS*	5
	312 TFLOPS	624 TFLOPS*	5
	312 TFLOPS	624 TFLOPS*	5
624 TOPS 1248 TOPS*			
40GB HBM2	80GB HBM2e	40GB HBM2	80GB HBM2e
1,555GB/s	1,935GB/s	1,555GB/s	2,039GB/s
250W	300W	400W	400W
Up to 7 MIGs @ 5GB	Up to 7 MIGs @ 10GB	Up to 7 MIGs @ 5GB	Up to 7 MIGs @ 10GB
PC	le	S)	M
NVIDIA® NVLink® Bridge for 2 GPUs: 600GB/s ** PCIe Gen4: 64GB/s		NVLink: PCle Gen	600GB/s 4: 64GB/s
Partner and NVIDIA- Certified Systems [™] with 1-8 GPUs		NVIDIA H Partner ar Certified Sy 4,8, or NVIDIA DGX	GX™ A100- nd NVIDIA- vstems with I6 GPUs I™ A100 with
	A100 40GB PCIe	A100 A100 406B PCle 806B PCle 9.7 TF 19.5 T 19.5 T 19.5 T 19.5 T 19.5 T 156 TFLOPS I 19.5 T 312 TFLOPS I 19.5 T 406B 806B HBM2 1.2 TFLOPS I 406B 806B HBM2 1.9356B/s 1,5556B/s 1.9356B/s 250W 300W Up to 7 MI6s@ 56B 106B PCIE Gen4: 640B/s 106B Partner and NVIDIA- Certified Systems™ with 1-8 GPUs	A100 40GB PCle A100 80GB PCle A100 40GB SXM 9.7 TFL0PS 9.7 TFL0PS 19.5 TFL0PS 19.5 TFL0PS 156 TFL0PS 312 TFL0PS 312 TFL0PS 624 TFL0PS 312 TFL0PS 624 TFL0PS 624 T0PS 624 TFL0PS 624 T0PS 1248 T0PS 624 T0PS 1256B/S 1,9356B/S 1,9356B/S 1,5556B/S 1,5556B/S 1,9356B/S 1,9356B/S 1,9356B/S 1,9356B/S 1,9356B/S 1,9356B/S 1,5556B/S 106B 56B 106B 106B

SPECIFICATIONS

	H100 SXM	H100 PCle	
FP64	34 TFLOPS	26 TFLOPS	
FP64 Tensor Core	67 TFLOPS	51 TFLOPS	
FP32	67 TFLOPS	51 TFLOPS	
TF32 Tensor Core	989 TFLOPS*	756 TFLOPS*	
BFLOAT16 Tensor Core	1,979 TFLOPS*	1,513 TFLOPS*	
FP16 Tensor Core	1,979 TFLOPS*	1,513 TFLOPS*	
FP8 Tensor Core	3,958 TFLOPS*	3,026 TFLOPS*	
INT8 Tensor Core	3,958 TOPS*	3,026 TOPS*	
GPU memory	80GB	80GB	
GPU memory bandwidth	3.35TB/s	2TB/s	
Decoders	7 NVDEC	7 NVDEC	
	7 JPEG	7 JPEG	
Max thermal design	Up to 700W	300-350W	
power (TDP)	(configurable)	(configurable)	
Multi-Instance GPUs	Up to 7 MIGS @ 10GB each		
Form factor	SXM	PCle	
		dual-slot air-cooled	
Interconnect	NVLink: 900GB/s PCIe Gen5: 128GB/s	NVLink: 600GB/s PCIe Gen5: 128GB/s	
Server options	NVIDIA HGX [™] H100 partner and NVIDIA- Certified Systems [™] with 4 or 8 GPUs NVIDIA DGX [™] H100 with 8 GPUs	Partner and NVIDIA- Certified Systems with 1-8 GPUs	
NVIDIA AI Enterprise	Add-on	Included	

** SXM4 GPUs via HGX A100 server boards; PCIe GPUs via NVLink Bridge for up to two GPUs

* Shown with sparsity. Specifications 1/2 lower without sparsity.

40

https://www.megware.com/fileadmin/user_upload/LandingPage%20NVIDIA/nvidia-h100-datasheet.pdf https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a100/pdf/nvidia-a100-datasheet-us-nvidia-1758950-r4-web.pdf

Memory Usage

• The table shows the GPU memory required for inference, while the memory required for training is approximately **four** times that of inference.

	FP32	FP16	INT8
BERT-base-uncased-0.1B	0.5 GB	0.24 GB	0.12 GB
GPT-2-0.1B	0.56 GB	0.28 GB	0.14 GB
TinyLlama-1.1B-Chat	4.6 GB	2.3 GB	1.1 GB
Microsoft Phi-2	11.8 GB	6 GB	3 GB
Mistral-7B-v0.2	33 GB	16.5 GB	8.25 GB
Llama-3-8B-Instruct	33 GB	17 GB	8.5 GB
Llama-3-70B-Instruct	311 GB	155 GB	77 GB
Qwen2-72B-Instruct	322 GB	161 GB	80 GB
Mistral-8x22B-v0.1	631 GB	316 GB	158 GB
Bloom-176B	787 GB	394 GB	200 GB

Assumption: Text length is 512, batch size is 8, and the number of GPUs is 1.

大模型显存计算器					
支持的模型数量: 127 最后更新日期: 20240826					
Qwen/Q× Q	wen/Q× Qwen/Q×				
LoRA微调百分比:	1.0	%			
数据类型	阶段	Qwen/Qwen2-Math-72B-Instruct	Qwen/Qwen2-Math-7B	Qwen/Qwen2-1.5B	
	Total Size	266.52	26.45	9.25	
	Inference	319.83	31.74	11.10	
float32	Training using Adam	1066.09	105.80	37.00	
	LoRA Fine-Tuning	326.69	32.42	11.25	
	Parameters	71.46	7.07	1.54	
	Total Size	133.26	13.22	4.63	
float16/bfloat16	Inference	159.91	15.87	5.55	
	Training using Adam	533.05	52.90	18.50	
	LoRA Fine-Tuning	166.77	16.55	5.70	
	Parameters	71.46	7.07	1.54	

https://www.llamafactory.cn/gpu-memory-estimation.html

Pretraining Optimization

- **Model Parallelism** Splits a large model across multiple GPUs, distributing different layers or partitioning individual layers (e.g., tensor parallelism) to handle memory constraints.
- **Data Parallelism** Duplicates the entire model across multiple GPUs, but each GPU processes a different mini-batch of data, synchronizing gradients after each step.

Model Parallelism

Data Parallelism

https://medium.com/@minhanh.dongnguyen/megatron-lm-how-modelparallelism-is-pushing-language-models-to-new-heights-c21a5343e06a

Lingua

- Meta Lingua is a lightweight, efficient codebase developed by Meta AI for training and inference of large language models (LLMs).
- Designed with research in mind, it utilizes modular PyTorch components, enabling researchers to experiment with new architectures, loss functions, and datasets with ease.
- This self-contained platform facilitates rapid prototyping and scalability, making it accessible for those with limited computational resources.

Meta Lingua

Mathurin Videau^{*}, Badr Youbi Idrissi^{*}, Daniel Haziza, Luca Wehrstedt, Jade Copet, Olivier Teytaud, David Lopez-Paz. ***Equal and main contribution**

Meta Lingua is a minimal and fast LLM training and inference library designed for research. Meta Lingua uses easy-to-modify PyTorch components in order to try new architectures, losses, data, etc. We aim for this code to enable end to end training, inference and evaluation as well as provide tools to better understand speed and stability. While Meta Lingua is currently under development, we provide you with multiple apps to showcase how to use this codebase.

https://github.com/facebookresearch/lingua

Instruction Tuning

- Instruction Tuning
- The Role of Instruction Tuning
- Instruction Data
 - Text
 - Math
 - Code
 - Multi-modal
- Instruction Tuning Loss
- Llama-factory

Instruction Tuning or Supervised Fine-tuning (SFT)

• Instruction Tuning: Fine-tunes a pretrained model using instruction-based datasets to improve task-following abilities.

Feature	Pretraining	Instruction Tuning
Objective	Train the model on a large-scale corpus to learn general language patterns	Make the model better at following human instructions across multiple tasks
Training Data	Large, unlabeled, diverse text (e.g., books, Wikipedia, web data)	Instruction-based datasets with input-output pairs (e.g., "Summarize this text")
Learning Type	Self-supervised learning (e.g., Masked LM, Causal LM)	Supervised fine-tuning on human-written instructions
Generalization	Learns broad language representations	Adapts to task-following behaviors and improves zero-shot/few-shot abilities
Task-Specific?	No, learns from raw text without explicit tasks	Yes, explicitly trained to understand instructions across multiple domains
Example	Training GPT from scratch on massive web data	Fine-tuning GPT on an instruction dataset like FLAN, Super-NaturalInstructions
Example Models	GPT-3, BERT, T5 (trained from scratch)	InstructGPT, ChatGPT, FLAN-T5, GPT-4

The Role of Instruction Tuning

 Instruction tuning aligns queries with knowledge already in LLMs with similar behavioral norms

Learning or Self-aligning? Rethinking Instruction Fine-tuning

Instruction Data (Text)

Input Explain tradeoffs between fiscal and monetary policy as tools in a nation's economic toolkit. Provide examples of past instances when each were utilized, the economic conditions that led to them being deployed, their intended effects, and an evaluation of their relative efficacy and consequences.

Fiscal and monetary policy are the two main tools that governments have to influence economic activity. They each have benefits and drawbacks. Fiscal policy refers to government spending and taxation decisions. Examples of fiscal policy include: • During the Great Recession, the U.S. government implemented a fiscal stimulus through the American Recovery and Reinvestment Act of 2009. This included increased spending on infrastructure, tax cuts, and expanded unemployment benefits. The intention was to boost aggregate demand and stimulate economic activity. Studies have found that the stimulus had a positive but modest impact on economic growth. • The Trump administration implemented tax cuts in 2017 with the goal of increasing business investment and growth. However, the effect on growth has been Output debated, and the tax cuts significantly increased the federal budget deficit. Monetary policy refers to decisions by a central bank, like the Federal Reserve, about interest rates and the money supply. Examples of monetary policy include: • After the 2008 financial crisis, the Fed lowered interest rates to near zero and implemented quantitative easing programs to increase liquidity. The intention was to boost lending, investment, and consumer spending. These actions are credited with helping the economy recover. • In the late 1990s, the Fed raised interest rates to reduce inflationary pressures from economic growth. Higher rates contributed to slowing the economy and avoiding a spike in prices. The key tradeoffs are:.....

Instruction Data (Math)

	I have 5 marbles numbered 1 through 5 in a bag. Suppose I take out two different marbles at random. What
Input	is the expected value of the sum of the numbers on the marbles?

There are $\frac{10}{10} = 10$ different pairs of marbles can be drawn, and the expected value of the sum is the average of the sums of each pair. This is \begin{align*} Output $\frac{1}{10}((1+2)+(1+3)+(1+4)+(1+5)+(2+3)}{10} = \frac{1}{10}((1+2)+(1+3)+(1+4)+(1+5)+(2+3)}{10} = \frac{1}{10}(1+2)+(1+3)+(1+4)+(1+5)+(2+3)}{10} = \frac{1}{10}(1+2)+(1+3)+(1+4)+(1+5)+(2+3)}{10} = \frac{1}{10}(1+2)+(1+3)+(1+4)+(1+5)+(2+3)}{10} = \frac{1}{10}(1+2)+(1+3)+(1+3)+(1+3)+(1+3)}{10} = \frac{1}{10}(1+2)+(1+3)+(1+3)+(1+3)+(1+3)}{10} = \frac{1}{10}(1+2)+(1+3)+(1+3)+(1+3)+(1+3)}{10} = \frac{1}{10}(1+2)+(1+3)+(1+3)+(1+3)}{10} = \frac{1}{10}(1+2)+(1+3)+(1+3)+(1+3)+(1+3)}{10} = \frac{1}{10}(1+2)+(1+3)+$ \boxed{6}. \end{align*}

A standard deck of 52 cards has 13 ranks (Ace, 2, 3, 4, 5, 6, 7, 8, 9, 10, Jack, Queen, King) and 4 suits (\$\spadesuit\$, \$\heartsuit\$, \$\diamondsuit\$, and \$\clubsuit\$), such that there is exactly one card for any Input given rank and suit. Two of the suits (\$\spadesuit\$ and \$\clubsuit\$) are black and the other two suits (\$\heartsuit\$ and \$\diamondsuit\$) are red. The deck is randomly arranged. What is the probability that the top three cards are all \$\spadesuit\$s?

Output

There are 13 ways to choose the first card to be a \$\spadesuit\$, then 12 ways to choose the second card to be another \$\spadesuit\$, then 11 ways to choose the third card to be a \$\spadesuit\$. There are \$52 \times 51 \times 50\$ ways to choose any three cards. So the probability is \$\dfrac{13 \times 12 \times $11{52 \times 51 \times 50} = \sum_{11}{350}$

https://huggingface.co/datasets/alpayariyak/MATH Instruction Format

Instruction Data (Code)

Input

Write me Python code is a program to read, parse, and display thermal data from the Topdon TC001 Thermal camera. It includes detailed information about the program, such as its author, date of creation, and purpose. The code also includes a list of key bindings for controlling the program, such as increasing/decreasing blur, changing the interpolated scale, and toggling the HUD. The code also includes a function to detect if the program is running on a Raspberry Pi, as OpenCV behaves differently on different builds. The code then initializes the video capture device and sets the appropriate properties, such as not converting the video to RGB to preserve the temperature data. The code then sets the initial values for various parameters, such as the window size, scale, and contrast. It also creates a named window for displaying the thermal data and sets up the font and color map for the display. The main loop of the program then begins, which includes code for reading the frames from the video capture device, parsing the thermal data, and displaying the data on the screen. The code also includes code for handling key presses, such as changing the blur radius, contrast, and color map, and for recording and taking snapshots of the thermal data.

Output

#!/usr/bin/env python3\n'"\nLes Wright 21 June 2023\nhttps://youtube.com/leslaboratory\nA Python program to read, parse and display thermal data from the Topdon TC001 Thermal camera!\n'"\nprint('Les Wright 21 June 2023')\nprint('https://youtube.com/leslaboratory')\nprint('A Python program to read, parse and display thermal data from the Topdon TC001 Thermal camera!')\nprint('Iested on Debian all features are working correctly')\nprint('This will work on the Pi However a number of workarounds are implemented!')\nprint('Seemingly there are bugs in the compiled version of cv2 that ships with the Pi...

Instruction Data (Multi-modal)

Instruction Tuning Loss

- Two key factors affecting the effectiveness of Instruction Tuning (IM):
 - The ratio between instruction length and output length in the training data. IM is particularly effective when instructions are long while outputs are short.
 - The number of training samples. IM performs better when the number of training samples is small.

Llama-factory

Supported Training Approaches

Approach	Full-tuning	Freeze-tuning	LoRA	QLoRA
Pre-Training				
Supervised Fine-Tuning				
Reward Modeling				
PPO Training				
DPO Training				
KTO Training				
ORPO Training				
SimPO Training				

Llama3-SFT-Lora

https://github.com/hiyouga/LLaMA-Factory

Reinforcement Learning from Human Feedback

- Al Safety
- Reinforcement Learning from Human Feedback
- PPO and DPO
- DPO Implementation
- OpenRLHF
- Post-Training

AI Safety

 Al safety is crucial to ensure that artificial intelligence systems operate reliably, ethically, and without unintended harmful consequences, protecting both individuals and society as Al becomes more powerful and autonomous.

Taylor Swift highlights harmful Al use: a tale of two "deepfakes"

13 February 2024 Read Time 8 mins

INSIGHTS

The recent incident involving fake explicit images of singer Taylor Swift has brought the challenge of 'deepfakes' once again into the mainstream. The incident, along with a second, lesser-known "deepfake" debacle following Swift's recent win at the Grammy Awards, provides apt (albeit unfortunate) grounds to explore the evolving meaning of deepfakes and the regulatory responses to their harmful distribution online.

Reinforcement Learning from Human Feedback (RLHF)

 Reinforcement Learning from Human Feedback (RLHF) is a technique that finetunes AI models by incorporating human preferences to improve alignment with human values and expectations.

PPO and DPO

- Direct Preference Optimization (DPO) is an alternative to Reinforcement Learning from Human Feedback (RLHF) that fine-tunes language models based on human preferences without requiring a reward model or reinforcement learning.
- Collect human preference data Given two model responses, humans choose the preferred one.
- Optimize the model directly Instead of training a reward model + PPO. DPO directly optimizes the model to increase the probability of preferred responses while decreasing the probability of rejected ones.
- More stable training DPO avoids the instabilities and high compute costs of RL-based fine-tuning.

Direct Preference Optimization: Your Language Model is Secretly a Reward Model

DPO Implementation

•••

from datasets import load_dataset
from trl import DP0Config, DP0Trainer
from transformers import AutoModelForCausalLM, AutoTokenizer

model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen2-0.5B-Instruct")
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2-0.5B-Instruct")
train_dataset = load_dataset("trl-lib/ultrafeedback_binarized",
split="train")

training_args = DPOConfig(output_dir="Qwen2-0.5B-DPO", logging_steps=10)
trainer = DPOTrainer(model=model, args=training_args,
processing_class=tokenizer, train_dataset=train_dataset
trainer.train()

https://huggingface.co/docs/trl/main/dpo_trainer

OpenRLHF

- OpenRLHF is a high-performance RLHF framework built on Ray, DeepSpeed and HF Transformers.
- ➢ Ray helps distribute RL training across multiple GPUs/CPUs.
- DeepSpeed optimizes large-scale model training, making RLHF more memory-efficient.
- HF Transformers provide the LLM backbone for fine-tuning.

[English | <u>中文</u> | <u>日本語</u>]

OpenRLHF is a high-performance RLHF framework built on Ray, DeepSpeed and HF Transformers:

- **Simple and easy to use**: OpenRLHF is one of the simplest high-performance RLHF libraries currently available, and seamlessly compatible with Huggingface models and datasets.
- High performance: RLHF training spends 80% of the time on the sample generation stage. Thanks to the ability to use a large inference batch size with Ray and Packing Samples and vLLM generation acceleration, the performance of OpenRLHF 3~4x+ that of Optimized DeepSpeedChat with Hybrid Engine.
- Distributed RLHF: OpenRLHF distribute the Actor, Reward, Reference, and Critic models onto separate GPUs using Ray, while placing the Adam optimizer on the CPU. This enables full-scale fine-tuning of 70B+ models with multiple A100 80G GPUs and vLLM and 7B models across multiple 24GB RTX 4090 GPUs.
- Hybrid Engine: OpenRLHF also supports the hybrid engine, allowing all models and vLLM engines to share the GPUs to avoid GPU idling.
- **PPO Implementation Optimization**: We integrated the implementation tricks for PPO to improve the training stability, referencing <u>Zhihu</u> and <u>Advanced Tricks for Training Large Language Models with</u> <u>Proximal Policy Optimization</u>.

Post-Training

 Post-training of LLMs refines pretrained models through techniques like supervised fine-tuning, instruction tuning, RLHF, DPO, and quantization to enhance alignment, efficiency, and task performance.

https://towardsdatascience.com/fine-tune-your-own-llama-2-model-in-a-colab-notebook-df9823a04a32/ LLM Post-Training: A Deep Dive into Reasoning Large Language Models

Evaluation

- Benchmarks
- Cantonese Benchmark
- GSM-PLUS
- TMGBench
- VL-RewardBench
- Opencompass

Benchmarks

Benchmark	Focus Area	Description	Example Metrics
MMLU (Massive Multitask Language Understanding)	General knowledge & reasoning	57 subjects covering STEM, humanities, social sciences, etc.	Accuracy (%)
HellaSwag	Commonsense reasoning	Tests everyday scenario understanding	Accuracy (%)
ARC (AI2 Reasoning Challenge)	Logical reasoning	Grade-school-level science and reasoning questions	Accuracy (%)
GSM8K (Grade School Math 8K)	Math reasoning	Solving elementary school-level math problems	Accuracy (%)
MATH	Advanced math	Tests high-school & olympiad-level math ability	Accuracy (%)
BBH (BigBench Hard)	Complex reasoning	Harder subset of BigBench tasks, including ethics, social dynamics	Accuracy (%)
TruthfulQA	Truthfulness	Measures resistance to misinformation and factual consistency	Truthfulness Score (%)
MT-Bench	Multi-turn chat	Evaluates LLMs in a conversational multi-turn dialogue setting	Score (1-10)
HumanEval	Code generation	Tests LLMs' ability to write functional code	Pass@1(%)
MBPP (Multi-turn Python Benchmark)	Python programming	Evaluates Python code generation for multi-turn problem-solving	Pass@1(%)
OpenAI's Chatbot Arena	Overall LLM ranking	Human preference ranking of chatbot responses	Elo Score
AGIEval	Human-like intelligence	Measures model performance on human exams (SAT, GRE, LSAT, etc.)	Score (%)
SuperGLUE	NLP general tasks	Evaluates performance across a variety of NLP tasks	Accuracy (%)
TydiQA	Multilingual QA	Tests question-answering ability in multiple languages	F1 Score

Cantonese Benchmark

Designed to evaluate LLM performance in factual generation, mathematical logic, complex reasoning, and general knowledge in Cantonese, which aim to advance open-source Cantonese LLM technology.

question \$\$ string · lengths	answer string · lengths
26 226	29 357
Janet每日经常有16枚蛋。渠每朝早食三只作早餐,同埋每日用四只喺磨丁饼制作俾佢慨朋友。每日渠会将余下慨蛋以每只\$2慨价钱喺 农货市场出售。渠每日喺农货市场赚几多钱?	Janet每日卖16-3-4=9只鸭蛋。渠每日系农夫市场赚\$9*2=18。 ####18
一个长袍需要2卷蓝色纤维同半卷白色纤维。总共需要几卷布?	要制作一件白色的布料,需要2/2=1条白色纤维,所以总共需要2+1=3条布料。####3
Josh决定装修一间屋。渠买咗一间屋,价钱系\$80,000,再加上\$50,000慨修缮费用。呢个令到呢间屋慨价值增加咗150%。渠最终赚咗 几多钱?	间屋慨成本同埋维修费系80000+50000=130000,渠增加咗间屋慨价值系80000*1.5=120000,所以间屋慨新价值系 120000+80000=200000,所以渠赚咗\$200000-130000=70000。 ####70000
James决定每周跑3次短跑,每次跑60米。渠每星期总共跑咗几多米?	渠一个星期跑三次,所以渠跑3*60=180米。 ####180
Wendi每日喂饲渠慨鸡,每只鸡都要食三杯混合慨鸡饲料,入面有籽、虫虫同菜嘢,帮助渠哋保持健康。渠一日分三次喂哋鸡食。早上渠 会喂渠啲鸡15杯慨饲料。下午又系25杯。如果Wendi慨鸡群有20只,最后一餐渠要喂几多杯慨饲料俾佢啲鸡?	如果每只鸡每日吃3杯饲料,咁20只鸡每日就要用3*20=60杯饲料。如果渠早上喂15杯,而下午喂25杯,咁最后一餐就需要60-15- 25=20杯鸡饲料。 ####20
Kylar去到商店买杯系渠慨新公寓慨。一个杯系\$5,但每第二个杯只系原价慨60%。 Kylar想买16个杯。渠要支付多少钱?	一杯嘢打折后价钱系60/100*5=\$3。如果每第二杯嘢平啲,咁就系Kylar会买16/2=8杯平啲啲慨杯。所以系平啲啲慨杯,Kylar就要俾 8*3=\$24。而系原价慨杯,Kylar就要俾8*5=\$<40。所以总共Kylar需要俾24+40=\$64。
如果西雅图有20只羊,查尔斯顿有西雅图的4倍,图卢茵有查尔斯顿的两倍。所以图卢茵、查尔斯顿和西雅图总共有多少只羊?	如果西雅图有20只羊,查尔斯顿就有20*4=80只羊,图卢兹有比查尔斯顿多两倍的羊,即为2*80=160只羊,总共三个地方有 20+160+80=260只羊。 ####260
Carla而家要download一个200GB慨档案。通常渠每分钟可以download 2GB, 但系download到40%慨时候, Windows突然叫渠重新 启动去安装更新, 要用咗20分钟。之后Carla就要由零重新开始download。最终整个download慨过程需要几多时间?	先搵出40%档案有几个GB:200GB*40%=80GB,然后将呢个数字除以下载速率,搵出Windows重新启动慨时间:80GB/2GB/分钟=40分 钟,之后搵出重新启动后完整下载档案慨时间:200GB/2GB/分钟=100分钟,再加上下载40%档案慨时间,完整下载档案慨时间,同埋…
John开车行驶3个钟头,每小时60英里的速度,但突然发现有啲好重要慨嘢系屋企,所以掉头返去。渠试图系4个钟头内返到屋企,但起 初2个钟头都系坐喺堵塞慨交通度过。之后行车半个钟头,速度为30英里每小时,然后先得机会以每小时80英里慨速度行驶余下时间慨4…	渠转身时,渠离屋企有180英里远,喺最初慨四小时度,渠只可以开2个钟,系4-2=2个钟,半个钟后,渠行15英里,之后再开1.5个 钟,喺呢段时间,渠行咗120英里,所以渠总共行咗135英里,所以渠而家离屋企有45英里远。 ####45
Eliza每个星期工作慨前40个钟每小时收费系\$10。渠亦会收到加班费,加班费系渠正常小时收费慨1.2倍。如果Eliza呢个星期工作咗 45个钟,嗰周渠慨收入系几多?	Eliza有45-40=5个小时的加班费。渠慨加班时薪系\$10x1.2=\$12。咁Eliza将会收到\$12x5=\$60个加班费。渠正常慨每周收入系 \$10x40=\$400。所以,Eliza将会获得总共\$400+\$60=\$460呢个星期慨工资。 ####460
呢个新慨程式喺第一个月慨下载量系60次。第二个月慨下载量系第一个月慨3倍,但系第三个月就减少咗30%。呢个程式喺三个月内总共 有几次下载?	第二个月慨下载次数增加到3*60=180,喺头两个月慨时候,呢个程式慨总下载次数系180+60=240,第三个月慨时候,呢个程式慨下载 次数30/100*180=54,第三个月慨下载次数系180-54=126,三个月慨总下载次数系126+240=366####366

How Well Do LLMs Handle Cantonese? Benchmarking Cantonese Capabilities of Large Language Models

GSM-PLUS

 Adversarial grade school math (GSM-PLUS) dataset, an extension of GSM8K augmented with various mathematical perturbations.

Seed Question: Janet's ducks lay 16 eggs per day. She eats three for breakfast every morning and bakes muffins for her friends every day with four. She sells the remainder at the farmers' market daily for \$2 per fresh duck egg. How much in dollars does she make every day at the farmers' market?

Perturbatio	Perturbation Category Question Variation			
Numerical	Num. Sub.	$16 \rightarrow 20$ three \rightarrow five four \rightarrow six $2 \rightarrow 3$		
Variation	Digit Exp.	$ 16 \rightarrow 1600 \text{four} \rightarrow 400$		
	IDF Conv.	$ $ three $\rightarrow 1/4$ 2 $\rightarrow 2.5$		
Arithmetic	Add. Op.	Janet's ducks lay every day with four. She also uses two eggs to make a homemade hair mask every day. She sells make every day at the farmers' market?		
Variation	Rev. Op.	Janet's ducks lay 16 eggs per day. She eats three with four. She sells the remainder at the farmers' market daily for a certain amount per fresh duck egg. She makes \$18 every day at the farmers' market. How much does each duck egg cost?		
Problem Understanding Janet's ducks lay 16 eggs daily. She eats three for breakfast and uses four to bake muffit her friends. She sells the remaining eggs at the local farmers' market for \$2 per fresh egg. How much money does she make each day by selling eggs at the farmers' market for \$2 per fresh egg.		Janet's ducks lay 16 eggs daily. She eats three for breakfast and uses four to bake muffins for her friends. She sells the remaining eggs at the local farmers' market for \$2 per fresh duck egg. How much money does she make each day by selling eggs at the farmers' market?		
Distractor InsertionJanet's ducks with four. She also uses two eggs to feed her pet parrot, but he gives her two eggs from his own ducks to replace them. She sells at the farmer		Janet's ducks with four. She also uses two eggs to feed her pet parrot, but her neighbor gives her two eggs from his own ducks to replace them. She sells at the farmers' market?		
Critical Thinking Janet's ducks lay eggs per day. She eats three for breakfast every morning and much in dollars does she make every day at the farmers' market?		Janet's ducks lay eggs per day. She eats three for breakfast every morning and How much in dollars does she make every day at the farmers' market?		

Solution: Janet sells 16 - 3 - 4 = 9 duck eggs a day. She makes 9 * 2 = 18 every day at the farmer's market. Answer: 18

TMGBench

• A benchmark for evaluating the performance of large language models in game theory scenarios.

VL-RewardBench

• A benchmark spanning general multimodal queries, visual hallucination detection, and complex reasoning tasks.

Q: How many sinks and mirrors are there in the public restroom?

Answer 1 (Chosen) **Solution**: There are three sinks and three mirrors in the public restroom.

Answer 2 (Rejected) X: There are two sinks and four mirrors equipped with sensor taps alongside a matching set of hand dryers hanging above. **Qwen2-VL-7B Answer 2 is better**, which accurately states that there are two sinks and four mirrors in the image.

Llama-3.2-90B Answer 2 is better because it accurately describes the visual elements in the image, fully addresses all aspects of the question. Claude-3.5-Sonnet Answer 2 provides a more accurate, complete, and informative response to the question while maintaining clarity and relevance. It correctly identifies the number of sinks and mirrors and offers additional details about the restroom that enhance the overall understanding of the space.

VL-RewardBench: A Challenging Benchmark for Vision-Language Generative Reward Models

Opencompass

 OpenCompass is an LLM evaluation platform, supporting a wide range of models (Llama3, Mistral, InternLM2,GPT-4,LLaMa2, Qwen,GLM, Claude, etc) over 100+ datasets.

https://github.com/open-compass/opencompass

from opencompass.openicl.icl_prompt_template import PromptTemplate from opencompass.openicl.icl retriever import FixKRetriever from opencompass.openicl.icl_inferencer import GenInferencer from opencompass.openicl.icl_evaluator import AccEvaluator from opencompass.datasets import FinanceIQDataset from opencompass.utils.text postprocessors import first_capital_postprocess financeIQ subject mapping en = { 'certified_public_accountant': '注册会计师 (CPA) ', 'banking_qualification': '银行从业资格', 'securities_qualification': '证券从业资格', 'fund_qualification': '基金从业资格', financeIQ_all_sets = list(financeIQ_subject_mapping.keys()) financeIQ_datasets = [] for name in financeIQ all sets: _ch_name = financeIQ_subject_mapping[_name] financeIO infer cfg = dict(ice_template=dict(type=PromptTemplate,template=dict(begin='</E>',round=[dict(role='HUMAN', f'以下是关于{_ch_name}的单项选择题,请直接给出正确答案的 选项。\n题目: {{question}}\nA. {{A}}\nB. {{B}}\nC. {{C}}\nD. {{D}}' Prompt dict(role='BOT', prompt='答案是: {answer}'),]), ice token='</E>', retriever=dict(type=FixKRetriever, fix_id_list=[0, 1, 2, 3, 4]), inferencer=dict(type=GenInferencer), financeIQ_eval_cfg = dict(evaluator=dict(type=AccEvaluator), Metric pred_postprocessor=dict(type=first_capital_postprocess)) financeIQ_datasets.append(type=FinanceIQDataset, path='./data/FinanceIQ/', abbr=f'FinanceIQ-{_name}', Dataset reader_cfg=dict(input_columns=['question', 'A', 'B', 'C', 'D'], output_column='answer', test split='test'), infer_cfg=financeIQ_infer_cfg, eval_cfg=financeIQ_eval_cfg,

00

Prompt Engineering

- Prompt Engineering
- Ollama
- Zero-shot Prompting
- Few-shot Prompting
- Chain-of-Thought
- Self-Consistency
- Program-Aided Language Models
- Tree-of-Thought
- Structured Outputs
- OpenAl API

Prompt Engineering

 Prompt engineering is the practice of designing and optimizing prompts to effectively interact with large language models (LLMs). Since LLMs generate responses based on input prompts, the way a prompt is structured significantly influences the model's output quality, relevance, and coherence.

www.cobusgreyling.com

https://www.humanfirst.ai/blog/12-prompt-engineering-techniques

Ollama

- Ollama is an open-source framework designed for running and managing large language models (LLMs) efficiently on local machines.
- It provides a lightweight, user-friendly way to download, deploy, and interact with LLMs without requiring cloud-based APIs.

Get up and running with large language models.

Run <u>Llama 3.3</u>, <u>DeepSeek-R1</u>, <u>Phi-4</u>, <u>Mistral</u>, <u>Gemma 3</u>, and other models, locally.

Available for macOS, Linux, and Windows

base ~ ollama run qwen2.5:7b	
pulling manifest	
pulling 2bada8a74506 100%	4.7 GB
pulling 66b9ea09bd5b 100%	68 B
pulling eb4402837c78 100%	1.5 KB
pulling 832dd9e00a68 100%	11 KB
pulling 2f15b3218f05 100%	487 B
verifying sha256 digest	
writing manifest	
success	

Zero-shot Prompting

 Zero-shot prompting is a technique in prompt engineering where a large language model (LLM) is asked to perform a task without providing any explicit examples.
 Instead, the model relies solely on its pre-trained knowledge to generate a response based on the instructions given in the prompt.

Few-shot Prompting

 Few-shot prompting is a technique in prompt engineering where a large language model (LLM) is provided with a small number of examples (usually 1 to a few) to guide its response to a specific task. This approach helps the model better understand the desired output format and improves performance compared to zero-shot prompting.

Chain-of-Thought

 Chain-of-Thought (CoT) prompting is a prompt engineering technique that encourages a large language model (LLM) to generate intermediate reasoning steps before arriving at a final answer. This approach improves the model's ability to handle complex reasoning tasks, such as mathematical problem-solving, logical reasoning, and multi-step decision-making.

I went to the market and bought 10 apples. I gave 2 apples to the neighbor and 2 to the repairman. I then went and bought 5 more apples and ate 1. How many apples did I remain with?

11

Zero-shot

I went to the market and bought 10 apples. I gave 2 apples to the neighbor and 2 to the repairman. I then went and bought 5 more apples and ate 1. How many apples did I remain with? Let's think step by step.

First, you started with 10 apples.You gave away 2 apples to the neighbor and 2 to the repairman, so you had 6 apples left.Then you bought 5 more apples, so now you had 11 apples. Finally, you ate 1 apple, so you would remain with 10 apples.

•••

>>> I went to the market and bought 10 apples. I gave 2 apples to the neighbor and 2 to the repairman. I then went and bought 5 more apples and ate 1. How many apples did I remain with?

Qwen2.5-7B-Instruct

Let's break down the problem step by step:

- 1. You initially bought 10 apples.
- 2. You gave 2 apples to the neighbor, so you have: (10 2 = 8) apples left.
- 3. You gave 2 more apples to the repairman, so now you have: (8 2 = 6) apples left.
- 4. Then you bought 5 more apples, so now you have: (6 + 5 = 11) apples.
- 5. Finally, you ate 1 apple, so you are left with: \(11 - 1 = 10\) apples.

Therefore, you remain with **10 apples**
Self-Consistency

 Self-consistency is an advanced prompting technique used to improve the reliability of responses generated by large language models (LLMs). Instead of relying on a single answer, self-consistency works by generating multiple reasoning paths and selecting the most frequent or consistent answer, reducing variability and improving accuracy in complex tasks.

Program-Aided Language Models

 Program-Aided Language Models (PALMs) integrate traditional language models with external program execution, allowing them to generate structured solutions by leveraging symbolic reasoning, code execution, or computational tools to enhance accuracy and reliability in complex problem-solving tasks.

Chain-of-Thought (Wei et al., 2022)

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?

A: Roger started with 5 tennis balls. 2 cans of 3 tennis balls each is 6 tennis balls. 5 + 6 = 11. The answer is 11.

Q: The bakers at the Beverly Hills Bakery baked 200 loaves of bread on Monday morning. They sold 93 loaves in the morning and 39 loaves in the afternoon. A grocery store returned 6 unsold loaves. How many loaves of bread did they have left?

Model Output

Input

A: The bakers started with 200 loaves. They sold 93 in the morning and 39 in the afternoon. So they sold 93 + 39 = 132 loaves. The grocery store returned 6 loaves. So they had 200 - 132 - 6 = 62 loaves left. The answer is 62.

Program-aided Language models (this work)

Input

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?

A: Roger started with 5 tennis balls. tennis_balls = 5 2 cans of 3 tennis balls each is bought_balls = 2 * 3 tennis balls. The answer is answer = tennis balls + bought balls

Q: The bakers at the Beverly Hills Bakery baked 200 loaves of bread on Monday morning. They sold 93 loaves in the morning and 39 loaves in the afternoon. A grocery store returned 6 unsold loaves. How many loaves of bread did they have left?

Model Output

A: The bakers started with 200 loaves loaves_baked = 200 They sold 93 in the morning and 39 in the afternoon loaves_sold_morning = 93 loaves_sold_afternoon = 39 The grocery store returned 6 loaves. loaves_returned = 6 The answer is answer = loaves_baked - loaves_sold_morning - loaves_sold_afternoon + loaves_returned >>> print(answer) 74

Tree-of-Thought

 Tree-of-Thought (ToT) prompting is a reasoning technique for large language models that structures problemsolving as a tree-like process, where multiple reasoning paths are explored, evaluated, and refined to improve decision-making and complex problem-solving accuracy.

https://medium.com/@nexgenarch/5-advanced-prompting-techniques-to-ace-chatgpt-ac750aa2e01e

Tree of Thoughts: Deliberate Problem Solving with Large Language Models

Structured Outputs

• Ollama supports structured outputs making it possible to constrain a model's output to a specific format defined by a JSON schema.

. from ollama import chat from pydantic import BaseModel class Country(BaseModel): name: str capital: str languages: list[str] response = chat(messages= 'role': 'user', 'content': 'Tell me about Canada.', model='llama3.1', format=Country.model_json_schema(), country = Country.model_validate_json(response.message.content) print(country)

•••

name='Canada' capital='Ottawa' languages=['English', 'French']

Output

Python Code

https://ollama.com/blog/structured-outputs

Structured Outputs

• Specify the format requirements directly in the prompt.

```
You are a highly accurate AI assistant. Please generate a response in strict JSON format, ensuring the
output conforms exactly to the following structure:
  "title": "string",
  "description": "string",
  "data": [
      "id": "integer",
      "name": "string",
      "value": "float"
  "metadata": {
    "timestamp": "YYYY-MM-DD HH:MM:SS",
    "source": "string"
Instructions:
1. Do not include any additional text, explanations, or formatting outside the JSON.
2. Ensure all keys and values adhere to their expected data types.
3. Replace placeholder values (e.g., "string", "integer", "float") with meaningful content.
4. The "timestamp" field should follow the YYYY-MM-DD HH:MM:SS format.
5. The response must be a valid JSON object.
```

OpenAl API

• The OpenAI Python library provides convenient access to the OpenAI REST API from any Python 3.8+ application.

import os from openai import OpenAI
<pre>client = OpenAI(# This is the default and can be omitted api_key=os.environ.get("OPENAI_API_KEY"),)</pre>
<pre>response = client.responses.create(model="gpt-40", instructions="You are a coding assistant that talks like a pirate.", input="How do I check if a Python object is an instance of a class?",)</pre>
<pre>print(response.output_text)</pre>

Large Reasoning Models

- Train-time Compute
- Test-time Compute
- Test-time Compute Scaling Laws
- Deepseek-R1
- Reasoning Example
- Distillation

Train-time Compute

- To increase the performance of LLMs during pre-training, developers often increase the size of the:
 - Model (# of parameters)
 - Dataset (# of tokens)
 - Compute (# of FLOPs)

Test-time Compute

• The paradigm shift from scaling train-time compute to scaling test-time compute.

Test-time Compute Scaling Laws

• Test-time compute might actually follow the same trend as scaling train-time compute

Deepseek-R1

 DeepSeek-R1 is an open-source large language model developed by the Chinese AI company DeepSeek, designed to excel in tasks requiring logical inference, mathematical reasoning, and real-time problem-solving.

System prompt

A conversation between User and Assistant. The user asks a question, and the Assistant solves it. The assistant first thinks about the reasoning process in the mind and then provides the user with the answer. The reasoning process and answer are enclosed within <think></think> and <answer></answer> tags, respectively, i.e., <think> reasoning process here </think> <answer> answer here </answer>.

https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-reasoning-llms DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning

Reasoning Example

How many times does 'n' appear in 'The University of Hong Kong'?

◎ 已深度思考(用时 26 秒) へ

Okay, let me try to figure out how many times the letter 'n' appears in the phrase "The University of Hong Kong". First, I need to make sure I have the correct spelling of the university's name. Let me write it out: "The University of Hong Kong".

Now, I need to go through each word one by one and count the 'n's. Let's break it down word by word.

Starting with the first word: "The". T-H-E. No 'n' there. So that's 0.

Next word: "University". Let's spell that out: U-N-I-V-E-R-S-I-T-Y. Okay, looking for 'n's here. The second letter is 'N', so that's one. Is there another 'n' in "University"? Let me check again. U-N-I-V-E-R-S-I-T-Y. No, only one 'n' here. So total so far is 1.

Third word: "of". O-F. No 'n's here. Still 1.

Fourth word: "Hong". H-O-N-G. Let's see. The third letter is 'N', so that's another 'n'. So now total is 1 + 1 = 2.

Fifth word: "Kong". K-O-N-G. Again, the third letter is 'N', so that's another 'n'. Now total is 2 + 1 = 3.

So putting it all together: "The University of Hong Kong" has the letter 'n' appearing 1 (from University) + 1 (Hong) + 1 (Kong) = 3 times.

Wait, let me double-check to make sure I didn't miss any. Let's go through the entire phrase again without splitting into words:

T-H-E U-N-I-V-E-R-S-I-T-Y O-F H-O-N-G K-O-N-G.

Looking at each letter:

T, H, E, (space), U, N, I, V, E, R, S, I, T, Y, (space), O, F, (space), H, O, N, G, (space), K, O, N, G.

Now, let's list all the letters and underline the 'n's:

T, H, E, U, N, I, V, E, R, S, I, T, Y, O, F, H, O, N, G, K, O, N, G.

So the 'n's are at positions: 4th (N in University), 17th (N in Hong), and 21st (N in Kong). That's three 'n's total.

Wait, but let me count again:

1. University: N is the 2nd letter.

2. Hong: N is the 3rd letter.

3. Kong: N is the 3rd letter.

Yes, that's three 'n's. I think that's correct. I don't see any other 'n's in the phrase. The words "The", "of" don't have any, and the rest of the letters in "University", "Hong", "Kong" only have one each. So the total should be 3.

The letter 'n' appears 3 times in "The University of Hong Kong".

Breakdown:

- University: 1 'n'
- Hong: 1 'n'
- Kong: 1 'n'

Total: 1 + 1 + 1 = **3** times.

Distillation

• Distillation is a model compression technique where a smaller student model learns to replicate the behavior of a larger teacher model by mimicking its outputs.

Agent

- LLM-based Agent
- Tools: Tool-Use
- Tools: Function Calling
- Tools: Model Context Protocol
- Planning: ReAct
- Planning: Reflexion
- Application: Retrieval-Augmented Generation (RAG)
- Application: Computer-Using Agent

LLM-based Agent

 An LLM-based agent is an AI system that integrates memory, planning, action, and tool-use modules to autonomously process information, make decisions, and interact with users or environments efficiently.

https://lilianweng.github.io/posts/2023-06-23-agent/

Tools: Tool-Use

 Tool use in LLMs refers to their ability to integrate external tools, APIs, or plugins to enhance reasoning, retrieve information, execute actions, and interact with external systems beyond their pretrained knowledge.

The New England Journal of Medicine is a registered trademark of [QA("Who is the publisher of The New England Journal of Medicine?") \rightarrow Massachusetts Medical Society] the MMS.

Out of 1400 participants, 400 (or [Calculator(400 / 1400) \rightarrow 0.29] 29%) passed the test.

The name derives from "la tortuga", the Spanish word for $[MT("tortuga") \rightarrow turtle]$ turtle.

The Brown Act is California's law [WikiSearch("Brown Act") \rightarrow The Ralph M. Brown Act is an act of the California State Legislature that guarantees the public's right to attend and participate in meetings of local legislative bodies.] that requires legislative bodies, like city councils, to hold their meetings open to the public.

Tool Learning with Foundation Models

Toolformer: Language Models Can Teach Themselves to Use Tools

Tools: Function Calling

 Function calling provides a powerful and flexible way for OpenAl models to interface with your code or external services. This guide will explain how to connect the models to your own custom code to fetch data or take action.

•••

import requests

def get_weather(latitude, longitude):
 response = requests.get(f"https://api.open-meteo.com/v1/forecast?
latitude={latitude}&longitude=
{longitude}¤t=temperature_2m,wind_speed_10m&hourly=temperature_2m
,relative_humidity_2m,wind_speed_10m")
 data = response.json()
 return data['current']['temperature_2m']

from openai import OpenAI client = OpenAI() "type": "function", "function": { "name": "get_weather", "description": "Get current temperature for a given location.", "parameters": { "type": "object", "properties": { "location": { "type": "string", "description": "City and country e.g. Bogotá, Colombia" "required": ["additionalProperties": False "strict": True completion = client.chat.completions.create(model="gpt-40", messages=[{"role": "user", "content": "What is the weather like in Paris today?"}], print(completion.choices[0].message.tool_calls)

Tools: Model Context Protocol

- MCP is an open protocol that standardizes how applications provide context to LLMs.
- MCP provides a standardized way to connect AI models to different data sources and tools.

Planning: ReAct

• ReAct is a general paradigm that combines reasoning and acting with LLMs.

	ReAct
Question: Aside from the Apple Remote, what other device can	Thought 1: I need to search Apple Remote and find the program
control the program Apple Remote was originally designed to	it was originally designed to interact with.
interact with?	Act 1: Search[Apple Remote]
Standard	Obs 1: The Apple Remote is a remote control introduced in October 2005 by Apple originally designed to control the
Answer: iPod	Front Row media center program
Reason only	Fredrik modra obligat
Thought: Let's think step by step. Apple Remote was originally	Thought 2: Apple Remote was originally designed to control the
designed to interact with Apple TV. Apple TV can be controlled	Front Row media center program. I need to search Front Row
by iPhone, iPad, and iPod Touch. So the answer is iPhone, iPad,	next and find what other device can control it.
and iPod Touch.	Act 2: Search[Front Row]
	UDS 2: Could not find [Front Row]. Similar: ['Front Row Seat
Answer: 1Phone, 1Pad, 1Pod Touch	to Earth', 'Front Row Motorsports', Front Row (Software)',]
	Thought 3: Front Row is not found. I need to search Front Row
Act only	(software) .
Act 1: Search[Apple Remote]	Act 3: Search [Front Row (software)]
Obs 1 : The Apple Remote is a remote control introduced	Obs 3: Front Row is a discontinued media center software
Act 2: Search[Front Row]	
Obs 2: Could not find [Front Row]. Similar:	Thought 4: Front Row (software) is controlled by an Apple
Act 3: Search[Front Row (software)]	Remote or the keyboard function keys. So the answer is
Obs 3: Front Row is a discontinued media center software	keyboard function keys.
Act 4: Finish[yes]	Act 4: Finish[keyboard function keys]

Planning: Reflexion

 Reflexion converts feedback (either free-form language or scalar) from the environment into linguistic feedback, also referred to as self-reflection, which is provided as context for an LLM agent in the next episode.

	1. Decision making	2. Programming	3. Reasoning	
(a) Task	You are in the middle of a room [] Task: clean some pan and put it in countertop.	Task: You are given a list of two strings [] of open '(' or close ')' parentheses only []	Task: What profession does John Lanchester and Alan Dean Foster have in common?	
(b)	[] Action:take pan1 from stoveburner1	<pre>def match_parens(lst): if s1.count('(') +</pre>	Think: [] novelist, journalist, critic [] novelist,	
Trajectory ↓	Action: clean pan1 with sinkbasin1 Obs: Nothing happens. []	<pre>s2.count('(') == s1.count(')') + s2.count(')'): [] return 'No'</pre>	novelist and screenwriter. Action: "novelist, screenwriter"	
(C) Evaluation	Rule/LM Heuristic: Hallucination.	Self-generated unit tests fail: assert match_parens()	Environment Binary Reward: 0	
(d) Reflection	[] tried to pick up the pan in stoveburner 1 [] but the pan was not in stoveburner 1. []	[] wrong because it only checks if the total count of open and close parentheses is equal [] order of the parentheses []	[] failed because I incorrectly assumed that they both had the same multiple professions [] accurately identifying their professions.	
(e) Next Trajectory	[] Action: take pan 1 from stoveburner 2 [] Obs: You put the pan 1 in	[] return 'Yes' if check(S1) or check(S2) else 'No'	Think: [] So the profession John Lanchester and Alan Dean Foster have in common is novelist.	

Application: Retrieval-Augmented Generation (RAG)

 Retrieval-Augmented Generation (RAG) enhances language models by retrieving relevant external information from a knowledge source to improve response accuracy, factuality, and contextual awareness.

https://blog.roboflow.com/what-is-retrieval-augmented-generation/

Application: Computer-Using Agent

 A computing agent is an autonomous system that processes data, executes tasks, and makes decisions using computational resources, integrating AI models, planning, and tool-use capabilities.

OSWorld: Benchmarking Multimodal Agents for Open-Ended Tasks in Real Computer Environments

Application: Social Agent

 A social agent is an Al-driven system designed to interact, communicate, and collaborate with humans or other agents using natural language, social cues, and adaptive behaviors.

A Survey on Large Language Model-Based Social Agents in Game-Theoretic Scenarios

Multi-Agents

- LLM-based Multi-Agents
- Task Solving: ChatDev
- Simulation: Generative Agents
- MetaGPT
- CAMEL

LLM-based Multi-Agents

 Large Language Modelbased multi-agents are AI systems where multiple LLM-powered agents collaborate, communicate, and coordinate tasks autonomously, leveraging specialized roles, memory, planning, and tool use for complex problem-solving.

Task Solving: ChatDev

 ChatDev stands as a virtual software company that operates through various intelligent agents holding different roles, including Chief Executive Officer, Chief Product Officer, Chief Technology Officer, Programmer, Reviewer, Tester, Art designer.

Simulation: Generative Agents

 Generative agents are AI systems that simulate human-like behaviors by integrating memory, planning, and adaptive generation to interact autonomously in dynamic environments.

Generative Agents: Interactive Simulacra of Human Behavior

MetaGPT: The Multi-Agent Framework

 MetaGPT is a multi-agent framework that structures large language models (LLMs) into specialized roles, enabling collaborative problem-solving, task decomposition, and efficient execution in complex workflows.

CAMEL

 CAMEL (Communicative Agents for Multi-agent Reinforcement Learning) is a framework that enables large language models (LLMs) to collaborate through role-based communication, enhancing coordination and problem-solving in multiagent interactions.

Agent	Chat Agent	Critic Agent	Deductive Reasoner	Agent Embodied Agent	Knowledge G	raph Agent
(MultiHop Ger	nerator Agent	Programmed Agent	Role Assignment Agent	Search Agent	Task Agent
Agent Societies	Role Playing	Workforce				

Conclusion

- We first discussed how to train large language models, including pretraining data preparation, tokenization, model architecture, instruction fine-tuning, RLHF and how to evaluate the performance of large language models.
- Then, we explored prompt engineering techniques, such as few-shot prompting and chain-of-thought (CoT).
- Next, we introduced the currently popular large reasoning models and observed the potential of reinforcement learning.
- Finally, we presented LLM-based agents and multi-agent systems, along with their related applications.

Course Project: Survey on Large Language Models (LLMs)

- Conduct a comprehensive survey on any topic related to large language models (LLMs).
- Each group will consist of 2-3 people to write a survey, with a maximum of 3 members.
- Each group will give a 10-15 minute presentation in the final class.
- All surveys must be submitted to <u>xiachongfeng1996@gmail.com</u> by April 21.

• Requirements:

- **Paper Format**: The survey must be written using the ARR <u>LaTeX/Word</u> template, with a main text of no less than 8 pages (excluding references and appendices).
 - https://github.com/acl-org/acl-style-files
- Independent Research: The survey must be based on original and independent research conducted by the team. Proper citations and references are required.
- Academic Integrity: Any form of academic misconduct, including plagiarism, excessive reliance on AI-generated content, or improper paraphrasing, is strictly prohibited. Violations will result in severe penalties, including project rejection and possible academic disciplinary action.

Natural Language Processing Group, The University of Hong Kong

Thanks!