
Hands-on Large Language Models

Xiachong Feng, Lingpeng Kong

20/03/2025

Outline

• Pretraining Data
• Tokenization
• Transformer
• Pre-training
• Instruction-tuning
• Reinforcement Learning

from Human Feedback
• Evaluation
• Prompt Engineering
• Large Reasoning Models
• Agent
• Multi-agents
• Conclusion

2

Pretraining Data

1. Common Crawl
2. FineWeb
3. Code Pretraining Data
4. Math Pretraining Data

3

Common Crawl

• Common Crawl is a non–profit founded in 2007.

• Common crawl is an open repository of web crawl data that can be accessed and

analyzed by researchers, data scientists, and developers.

• Over 250 billion pages spanning 18 years.

• 3–5 billion new pages added each month.

Language Models are Few-Shot Learners (NeurIPS 2020) 41422 Citations

GPT-3

4

https://commoncrawl.org/get-started

Common Crawl

• WARC files which store the raw crawl data

• WAT files which store computed metadata for the data stored in the WARC

• WET files which store extracted plaintext from the data stored in the WARC

https://data.commoncrawl.org/crawl-data/CC-MAIN-2025-08/index.html

CC-MAIN-2025-08

Year WeekMain File

5

FineWeb

• FineWeb, a new, large-scale (15-trillion tokens, 44TB disk space) dataset for LLM
pretraining.

• FineWeb is derived from 96 CommonCrawl snapshots and produces better-
performing LLMs than other open pretraining datasets.

https://huggingface.co/datasets/HuggingFaceFW/fineweb

How AP reported in all formats from tornado-stricken
regions March 8, 2012 When the first serious bout of
tornadoes of 2012 blew through middle America in
the middle of the night, they touched down in places
hours from any AP bureau. Our closest video
journalist was Chicago-based Robert Ray, who
dropped his plans to travel to Georgia for Super
Tuesday, booked several flights to the cities closest to
the strikes and headed for the airport. He’d decide
once there which flight to take. He never got on board
a plane. Instead, he ended up driving toward
Harrisburg, Ill., where initial reports suggested a town
was destroyed. That decision turned out to be a lucky
break for the AP. Twice.

6

FineWeb Recipe

https://huggingface.co/spaces/HuggingFaceFW/blogpost-fineweb-v1
7

FineWeb Recipe: Text Extraction

• WARC (Web ARChive format) files contain the raw data from the crawl, including
the full page HTML and request metadata.

• WET (WARC Encapsulated Text) files provide a text only version of those websites.
• Extract the text content from the WARC files using the trafilatura library

https://huggingface.co/spaces/HuggingFaceFW/blogpost-fineweb-v1
8

FineWeb Recipe: Base filtering

• Filtering is an important part of the curation process.
• It consists in removing part of the data (be it words, lines, or even full documents)

that lowers the performance of the model
• Applied URL filtering using a blocklist (https://dsi.ut-capitole.fr/blacklists/) to remove adult

content
• Applied a fastText language classifier to keep only English text with a score ≥ 0.65
• Applied quality and repetition filters from MassiveText

Scaling Language Models: Methods, Analysis & Insights from Training Gopher
9

FineWeb Recipe: Deduplication

• Methods to deduplicate datasets attempt to identify and remove
redundant/repeated data from the dataset.

• Removing these duplicates (deduplicating) has been correlated with improvements
in model performance[1] and a reduction in memorization of pretraining data[2],
which might allow for better generalization.

• Additionally, the performance uplift obtained through deduplication can be
equated to increased training efficiency: by removing duplicated content, a model
can reach the same performance level with fewer training iterations – or
equivalently, for a given number of training tokens, a model will have seen more
diverse data.[3][4]

[1] Deduplicating Training Data Makes Language Models Better
[2] Quantifying Memorization Across Neural Language Models
[3] Scaling Data-Constrained Language Models
[4] Scaling Laws and Interpretability of Learning from Repeated Data

10

FineWeb Recipe: MinHash Deduplication

I like to eat apples
and bananas

I like to eat bananas
and apples

I hate to eat
vegetables and

fruits

Document A Document B Document C

(I like),(like to) ,(to
eat) ,(eat apples) ,(apples

and) ,(and bananas)

(I like),(like to) ,(to
eat) ,(eat

bananas) ,(bananas
and) ,(and apples)

(I hate),(hate to) ,
(to eat) ,(eat

vegetables) ,(vegetables
and) ,(and fruits)

Document A (2-grams) Document B (2-grams) Document C (2-grams)

Apply Hash Functions (ℎ1, ℎ2, ℎ3, ℎ4)
Each gram is hashed with 4 different hash functions to generate hash values.

ℎ1 : min(42, 18, 29, 16, 8, 13) = 8
ℎ2 : min(13, 41, 33, 22, 37, 19) = 13
ℎ3 : min(25, 10, 17, 35, 29, 32) = 10
ℎ4 : min(7, 31, 21, 14, 28, 24) = 7

Document A Document B Document C

ℎ1 : min(42, 18, 29, 44, 24, 11) = 11
ℎ2 : min(13, 41, 33, 16, 30, 26) = 13
ℎ3 : min(25, 10, 17, 20, 15, 39) = 10
ℎ4 : min(7, 31, 21, 8, 19, 9) = 7

ℎ1 : min(32, 19, 29, 38, 27, 15) = 15
ℎ2 : min(45, 14, 33, 10, 20, 34) = 10
ℎ3 : min(6, 42, 17, 31, 12, 23) = 6
ℎ4 : min(40, 36, 21, 27, 33, 17) = 17

Band 1 (8, 13)
Band 2 (10, 7)

Document A Bands Document B Bands Document C Bands
Band 1 (11, 13)
Band 2 (10, 7)

Band 1 (15, 10)
Band 2 (6, 17)

11

Pretraining Data: Code

Qwen2.5-Coder Technical Report
DeepSeek-Coder: When the Large Language Model Meets Programming -- The Rise of Code Intelligence

Github
92 Programming

Language

Github
87 Programming

Language

Other Formats

Code-specific Rule-
based Filtering

Qwen2.5-Coder

DeepSeek-Coder

12

Pretraining Data: Math (Qwen Math Corpus v1)

Qwen2.5-Math Technical Report: Toward Mathematical Expert Model via Self-Improvement

• Data recall
• Recall of mathematical data from web sources, such as Common Crawl, to escalate the quantity of data
• Train a FastText classifier to classify mathematical texts.
• Leverage meta-information, such as URLs, to expand the data pool for mathematical data retrieval.

• Deduplication
• MinHash is employed to filter out similar mathematical documents.

• Filtering
• Language-model-based filtering technique to further curate the dataset.

• Data synthesis
• Employ the Qwen2-72B-Instruct model to synthesize a large amount of mathematical pre-training

corpus
• Optimization of the data mixture

• Conduct ablation studies on data mixture using a small math-specific language model.

Data
Recall

Deduplic
ation

Filtering
Data

synthesis
Optimization of

the data mixture

Obtain more
mathematical data

remove duplicates filter out low-
quality data

synthesize
additional data

optimize the proportion of
data from multiple

sources

Qwen Math
Corpus v1

700 billion tokens

13

Tokenization

1. What is tokenization?
2. Word-level Tokenization
3. Byte Pair Encoding (BPE)
4. Quirks of LLM Tokenization
5. Byte-Level Large Language Model

14

Tokenization

Pretraining Data Neural NetworkTrained Tokenizer

Tokenization is the process of splitting text into smaller units (tokens) to enable
efficient processing and analysis in Natural Language Processing.

The University of Hong Kong

Token count: 5

GPT4
Tokenizer

https://tiktokenizer.vercel.app/

TokenizerData for training
tokenizer

15

Basic: Word-Level Tokenization

• Word-level tokenization splits text into individual words based on spaces and
punctuation, making it suitable for languages with clear word boundaries like English.

HKU is dedicated to empowering
women for a brighter future.
Fostering diversity, inclusivity,
and gender equality is crucial
for our success. Let's honour
women's achievements and work
together towards a world where
they can thrive and lead

HKU

is

dedicated

to

…

lead

Original Document

Words Word Vectors (Embeddings)

NN

16

Byte Pair Encoding (BPE)

• Byte Pair Encoding (BPE) is a subword
tokenization algorithm that iteratively
merges the most frequent adjacent
character pairs to create a vocabulary of
subwords, helping models handle rare
words and out-of-vocabulary (OOV) words
efficiently.

https://www.reddit.com/r/LocalLLaMA/comments/1hmkirm/incredible_blog_post_on_byte_pair_encoding/ 17

Byte Pair Encoding (BPE)

• Two words in the dataset: low and lowest
• Initialization

• Start with each character in the corpus
as a separate token

• Vocabulary: {l, o, w, e, s, t, </w>}
• Tokenization at Character Level:

• “low” → l o w </w>
• “lowest” → l o w e s t </w>

• Counting Pair Frequencies
• Pair l o appears twice;
• Pair o w appears twice;
• Pair w </w> appears once;
• Pair e s appears once;
• Pair s t appears once: in "lowest".

• Merge the Most Frequent Pair:
• “low” → l ow </w>
• “lowest” → l ow e s t </w>
• Vocabulary: {l, o, w, e, s, t, </w>, ow}

• Recount Pair Frequencies:
• Pair l ow appears twice;
• Pair e s appears once;
• Pair s t appears once.

• Merge the Next Frequent Pair:
• “low” → low </w>
• “lowest” → low e s t </w>
• Vocabulary: {l, o, w, e, s, t, </w>,

ow, low}
• Merge the Next Frequent Pair:

• “lowest” → low es t </w>
• Vocabulary: {l, o, w, e, s, t, </w>,

ow, low, es}
• Merge the Final Pair:

• “lowest” → low est </w>
• Vocabulary: {l, o, w, e, s, t, </w>,

ow, low, es, est}
• Final Vocabulary:

• Vocabulary: {l, o, w, e, s, t, </w>,
ow, low, es, est}

• “low” → low </w>
• “lowest" → low est </w>

{l, o, w, e, s, t,
</w>, ow, low, es,
est}

o w→ ow
l ow --> low
e s → es
es t → est

Vocab

Merge
Rules

lower

l o w e r </w>

low e r </w>

low e unk </w>

new word

initialization

merge

final

Apply BPE for New Word

https://huggingface.co/learn/nlp-course/chapter6/5
https://vizuara.substack.com/p/understanding-byte-pair-encoding

18

https://huggingface.co/learn/nlp-course/chapter6/5

Note1: Byte-level Byte Pair Encoding (BPE)

• A base vocabulary that includes all possible base characters can be quite large
if e.g. all unicode characters are considered as base characters.

• To have a better base vocabulary, GPT-2 uses bytes as the base vocabulary, which
is a clever trick to force the base vocabulary to be of size 256 while ensuring that
every base character is included in the vocabulary.

Byte sequence

https://huggingface.co/docs/transformers/tokenizer_summary#byte-level-bpe 19

Note2: Independent Module Separate from LLM

• Tokenizer is a completely separate, independent module from the LLM. It has its
own training dataset of text (which could be different from that of the LLM), on
which you train the vocabulary using the Byte Pair Encoding (BPE) algorithm. It
then translates back and forth between raw text and sequences of tokens.

• The LLM later only ever sees the tokens and never directly deals with any text.

Let's build the GPT Tokenizer, Andrej Karpathy

decodingencoding

20

Note3: Visualization Tool for Tokenization

https://tiktokenizer.vercel.app/ 21

https://tiktokenizer.vercel.app/

Minimal Implementation

22

Additional:

① Select the code

② Ask the question

③ Explain
and Answer

https://www.cursor.com/ 23

Minimal Implementation

24

Quirks of LLM Tokenization

• Why can't LLM spell words? Tokenization.

• Why can't LLM do super simple string processing tasks like reversing a

string? Tokenization.

• Why is LLM worse at non-English languages (e.g. Japanese)? Tokenization.

• Why is LLM bad at simple arithmetic? Tokenization.

• Why did GPT-2 have more than necessary trouble coding in Python? Tokenization.

• Why did my LLM abruptly halt when it sees the string "<|endoftext|>"? Tokenization.

• What is this weird warning I get about a "trailing whitespace"? Tokenization.

• Why the LLM break if I ask it about "SolidGoldMagikarp"? Tokenization.

• Why should I prefer to use YAML over JSON with LLMs? Tokenization.

• Why is LLM not actually end-to-end language modeling? Tokenization.

• What is the real root of suffering? Tokenization.

Deep Dive into LLMs like ChatGPT, Andrej Karpathy 25

Byte-level LLM: EvaByte

• EvaByte is the first open-source byte-level model without tokenization that yet
matches the performance of modern tokenizer-based LMs.

EvaByte: Efficient Byte-level Language Models at Scale
https://hkunlp.github.io/blog/2025/evabyte/

multibyte prediction

the efficient attention mechanismPerformance

26

More Topics

• Regex patterns
• Tiktoken library
• Special tokens

Exercise
• https://github.com/k

arpathy/minbpe
• https://github.com/k

arpathy/minbpe/blo
b/master/exercise.m
d https://www.youtube.com/watch?v=zduSFxRajkE&t=5399s

Let's build the GPT Tokenizer, Andrej Karpathy 27

Transformer

• Transformer
• Attention Mechanism
• Multi-Head Attention
• Visualization
• Python Library
• HuggingFace Transformers
• Different Architectures

28

Transformer

• Transformer Architecture – Introduced a model relying
entirely on self-attention, removing recurrence (RNNs) and
convolution.

• Self-Attention Mechanism – Enabled parallel processing of
words by attending to all positions in a sequence.

• Multi-Head Attention – Allowed the model to capture
multiple relationships between words simultaneously.

• Positional Encoding – Injected sequence order information
into the model, since Transformers lack recurrence.

• State-of-the-Art Results – Achieved breakthrough
performance in machine translation and laid the foundation
for models like BERT & GPT.

Attention is All You Need 29

Attention Mechanism

• Attention in Transformers is a mechanism that enables the model to focus on
relevant parts of the input sequence by dynamically weighting token relationships,
improving context understanding and long-range dependencies.

https://github.com/rasbt/LLMs-from-scratch
https://lih-verma.medium.com/query-key-and-value-in-attention-mechanism-3c3c6a2d4085 30

Multi-Head Attention

Generated by GPT-4o
(give me the minimal code implementation of multi-head attention)Attention is All You Need

31

Visualization

https://bbycroft.net/llm 32

Python Library

• There are already numerous tools available for quickly building various Transformer
architectures.

https://github.com/huggingface/transformers https://github.com/facebookresearch/xformers

33

HuggingFace Transformers

https://huggingface.co/Qwen/Qwen2.5-7B-Instruct 34

Different Architectures

https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-mamba-and-state
https://www.rwkv.com/

35

RWKVMamba

Pretraining

• Training a Neural Network
• Traditional Training vs Pretraining
• Core Implementation
• NIVIDIA GPU
• Memory Usage
• Pretraining Optimization
• Lingua

36

Training a Neural Network

• Prepare Data – Collect, preprocess, and split data
into training, validation, and test sets.

• Define Model – Choose a neural network
architecture (e.g., MLP, CNN, Transformer) and
initialize parameters.

• Select Loss Function & Optimizer – Define a loss
function (e.g., Cross-Entropy, MSE) and an optimizer
(e.g., SGD, Adam).

• Train the Model – Iterate over multiple epochs,
performing forward propagation, loss computation,
and backpropagation to update weights.

• Evaluate – Assess model performance on
validation/test data.

Deep Dive into LLMs like ChatGPT, Andrej Karpathy

37

Traditional Training vs Pretraining

Feature Traditional Training Pretraining

Objective
Learn task-specific patterns

from scratch
Learn general representations or

features

Dataset Labeled task-specific dataset
Large, diverse, unlabeled

(self-supervised)

Training Time
Shorter

(depends on dataset size)
Longer

(days to weeks to months)

Generalization
Low

(trained for a specific task only)
High

(can be adapted to many tasks)

Fine-tuning? No fine-tuning, trained end-to-end
Yes, adapted to downstream tasks

No, Zero-shot prompting

38

Core Implementation

Define Model

Define Data

Define
Training Args

Start Training

39

GPU

• NVIDIA GPUs are high-
performance graphics
processing units designed
for computing tasks such
as gaming, AI, deep
learning, and scientific
simulations, offering
powerful parallel
processing capabilities.

https://www.megware.com/fileadmin/user_upload/LandingPage%20NVIDIA/nvidia-h100-datasheet.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a100/pdf/nvidia-a100-datasheet-us-nvidia-1758950-r4-web.pdf

H100

40

Memory Usage

FP32 FP16 INT8

BERT-base-uncased-0.1B 0.5 GB 0.24 GB 0.12 GB

GPT-2-0.1B 0.56 GB 0.28 GB 0.14 GB

TinyLlama-1.1B-Chat 4.6 GB 2.3 GB 1.1 GB

Microsoft Phi-2 11.8 GB 6 GB 3 GB

Mistral-7B-v0.2 33 GB 16.5 GB 8.25 GB

Llama-3-8B-Instruct 33 GB 17 GB 8.5 GB

Llama-3-70B-Instruct 311 GB 155 GB 77 GB

Qwen2-72B-Instruct 322 GB 161 GB 80 GB

Mistral-8x22B-v0.1 631 GB 316 GB 158 GB

Bloom-176B 787 GB 394 GB 200 GB

Assumption: Text length is 512, batch size is 8, and the number of GPUs is 1.

• The table shows the GPU memory required for inference, while the memory
required for training is approximately four times that of inference.

https://www.llamafactory.cn/gpu-memory-estimation.html

41

Pretraining Optimization

• Model Parallelism – Splits a large model across multiple GPUs, distributing different layers or
partitioning individual layers (e.g., tensor parallelism) to handle memory constraints.

• Data Parallelism – Duplicates the entire model across multiple GPUs, but each GPU processes a
different mini-batch of data, synchronizing gradients after each step.

https://medium.com/@minhanh.dongnguyen/megatron-lm-how-model-
parallelism-is-pushing-language-models-to-new-heights-c21a5343e06a 42

Lingua

• Meta Lingua is a lightweight, efficient
codebase developed by Meta AI for
training and inference of large
language models (LLMs).

• Designed with research in mind, it
utilizes modular PyTorch components,
enabling researchers to experiment
with new architectures, loss
functions, and datasets with ease.

• This self-contained platform
facilitates rapid prototyping and
scalability, making it accessible for
those with limited computational
resources.

https://github.com/facebookresearch/lingua
43

Instruction Tuning

• Instruction Tuning
• The Role of Instruction Tuning
• Instruction Data

• Text
• Math
• Code
• Multi-modal

• Instruction Tuning Loss
• Llama-factory

44

Instruction Tuning or Supervised Fine-tuning (SFT)

• Instruction Tuning: Fine-tunes a pretrained model using instruction-based
datasets to improve task-following abilities.

Feature Pretraining Instruction Tuning

Objective
Train the model on a large-scale corpus to

learn general language patterns
Make the model better at following human

instructions across multiple tasks

Training Data
Large, unlabeled, diverse text (e.g., books,

Wikipedia, web data)
Instruction-based datasets with input-output

pairs (e.g., “Summarize this text”)

Learning Type
Self-supervised learning (e.g., Masked LM,

Causal LM)
Supervised fine-tuning on human-written

instructions

Generalization Learns broad language representations
Adapts to task-following behaviors and
improves zero-shot/few-shot abilities

Task-Specific?
No, learns from raw text

without explicit tasks
Yes, explicitly trained to understand
instructions across multiple domains

Example
Training GPT from scratch

on massive web data
Fine-tuning GPT on an instruction dataset like

FLAN, Super-NaturalInstructions

Example Models GPT-3, BERT, T5 (trained from scratch) InstructGPT, ChatGPT, FLAN-T5, GPT-4

45

The Role of Instruction Tuning

• Instruction tuning aligns queries with knowledge already in LLMs with similar
behavioral norms

Learning or Self-aligning? Rethinking Instruction Fine-tuning
46

Instruction Data (Text)

https://huggingface.co/datasets/Josephgflowers/Finance-Instruct-500k

Input
Explain tradeoffs between fiscal and monetary policy as tools in a nation's economic toolkit. Provide

examples of past instances when each were utilized, the economic conditions that led to them being

deployed, their intended effects, and an evaluation of their relative efficacy and consequences.

Fiscal and monetary policy are the two main tools that governments have to influence economic activity.

They each have benefits and drawbacks. Fiscal policy refers to government spending and taxation

decisions. Examples of fiscal policy include: • During the Great Recession, the U.S. government

implemented a fiscal stimulus through the American Recovery and Reinvestment Act of 2009. This included

increased spending on infrastructure, tax cuts, and expanded unemployment benefits. The intention was to

boost aggregate demand and stimulate economic activity. Studies have found that the stimulus had a

positive but modest impact on economic growth. • The Trump administration implemented tax cuts in 2017

with the goal of increasing business investment and growth. However, the effect on growth has been

debated, and the tax cuts significantly increased the federal budget deficit. Monetary policy refers to

decisions by a central bank, like the Federal Reserve, about interest rates and the money supply.

Examples of monetary policy include: • After the 2008 financial crisis, the Fed lowered interest rates to near

zero and implemented quantitative easing programs to increase liquidity. The intention was to boost lending,

investment, and consumer spending. These actions are credited with helping the economy recover. • In the

late 1990s, the Fed raised interest rates to reduce inflationary pressures from economic growth. Higher

rates contributed to slowing the economy and avoiding a spike in prices. The key tradeoffs are:……

Output

47

Instruction Data (Math)

Input
I have 5 marbles numbered 1 through 5 in a bag. Suppose I take out two different marbles at random. What

is the expected value of the sum of the numbers on the marbles?

There are $\binom{5}{2} = 10$ different pairs of marbles can be drawn, and the expected value of the sum

is the average of the sums of each pair. This is \begin{align*}

\frac{1}{10}((1+2)+(1+3)+(1+4)+(1+5)+(2+3)&\\ +(2+4)+(2+5)+(3+4)+(3+5)+(4+5))&=\frac{60}{10} =

\boxed{6}. \end{align*}

Output

https://huggingface.co/datasets/alpayariyak/MATH_Instruction_Format

Input

A standard deck of 52 cards has 13 ranks (Ace, 2, 3, 4, 5, 6, 7, 8, 9, 10, Jack, Queen, King) and 4 suits

(\spadesuit, \heartsuit, \diamondsuit, and \clubsuit), such that there is exactly one card for any

given rank and suit. Two of the suits (\spadesuit and \clubsuit) are black and the other two suits

(\heartsuit and \diamondsuit) are red. The deck is randomly arranged. What is the probability that the

top three cards are all \spadesuits?

There are 13 ways to choose the first card to be a \spadesuit, then 12 ways to choose the second card

to be another \spadesuit, then 11 ways to choose the third card to be a \spadesuit. There are $52

\times 51 \times 50$ ways to choose any three cards. So the probability is $\dfrac{13 \times 12 \times

11}{52 \times 51 \times 50} = \boxed{\dfrac{11}{850}}$.

Output

48

Instruction Data (Code)

Input

Write me Python code is a program to read, parse, and display thermal data from the Topdon TC001

Thermal camera. It includes detailed information about the program, such as its author, date of creation,

and purpose. The code also includes a list of key bindings for controlling the program, such as

increasing/decreasing blur, changing the interpolated scale, and toggling the HUD. The code also includes

a function to detect if the program is running on a Raspberry Pi, as OpenCV behaves differently on different

builds. The code then initializes the video capture device and sets the appropriate properties, such as not

converting the video to RGB to preserve the temperature data. The code then sets the initial values for

various parameters, such as the window size, scale, and contrast. It also creates a named window for

displaying the thermal data and sets up the font and color map for the display. The main loop of the

program then begins, which includes code for reading the frames from the video capture device, parsing

the thermal data, and displaying the data on the screen. The code also includes code for handling key

presses, such as changing the blur radius, contrast, and color map, and for recording and taking snapshots

of the thermal data.

#!/usr/bin/env python3\n‘’‘\nLes Wright 21 June 2023\nhttps://youtube.com/leslaboratory\nA Python

program to read, parse and display thermal data from the Topdon TC001 Thermal camera!\n’‘’\nprint(‘Les

Wright 21 June 2023’)\nprint(‘https://youtube.com/leslaboratory’)\nprint(‘A Python program to read, parse

and display thermal data from the Topdon TC001 Thermal camera!’)\nprint(‘’)\nprint(‘Tested on Debian all

features are working correctly’)\nprint(‘This will work on the Pi However a number of workarounds are

implemented!’)\nprint(‘Seemingly there are bugs in the compiled version of cv2 that ships with the Pi…

Output

https://huggingface.co/datasets/Shiveswarran/llm_instruction_code_v7 49

Instruction Data (Multi-modal)

Input What sport is this?

a baseball gameOutput

https://huggingface.co/datasets/Multimodal-Fatima/VQAv2_test 50

Instruction Tuning Loss

• Two key factors affecting the effectiveness of Instruction Tuning (IM):
• The ratio between instruction length and output length in the training data. IM is particularly

effective when instructions are long while outputs are short.

• The number of training samples. IM performs better when the number of training samples is

small.

Instruction Tuning With Loss Over Instructions

Instruction Response

Instruction Modelling
Calculate loss over both instruction and response

Calculate loss over only response

51

Llama-factory

https://github.com/hiyouga/LLaMA-Factory

Llama3-SFT-Lora

Define source model

Define finetune method

Define dataset

Define tuning args

52

Reinforcement Learning from Human Feedback

• AI Safety
• Reinforcement Learning from Human Feedback
• PPO and DPO
• DPO Implementation
• OpenRLHF
• Post-Training

53

AI Safety

• AI safety is crucial to ensure that artificial intelligence systems operate reliably,
ethically, and without unintended harmful consequences, protecting both
individuals and society as AI becomes more powerful and autonomous.

https://www.gtlaw.com.au/insights/taylor-swift-highlights-harmful-ai-use-a-tale-of-two-deepfakes 54

Reinforcement Learning from Human Feedback (RLHF)

• Reinforcement Learning from Human Feedback (RLHF) is a technique that fine-
tunes AI models by incorporating human preferences to improve alignment with
human values and expectations.

Reward Modelling Reinforcement Learning (RL) Optimization

https://huggingface.co/blog/rlhf 55

PPO and DPO

• Direct Preference Optimization (DPO) is an alternative to

Reinforcement Learning from Human Feedback (RLHF)

that fine-tunes language models based on human

preferences without requiring a reward model or

reinforcement learning.

• Collect human preference data – Given two model

responses, humans choose the preferred one.

• Optimize the model directly – Instead of training a reward

model + PPO. DPO directly optimizes the model to

increase the probability of preferred responses while

decreasing the probability of rejected ones.

• More stable training – DPO avoids the instabilities and

high compute costs of RL-based fine-tuning.

Direct Preference Optimization: Your Language Model is Secretly a Reward Model 56

DPO Implementation

https://huggingface.co/docs/trl/main/dpo_trainer

DPO Training

57

OpenRLHF

• OpenRLHF is a high-performance
RLHF framework built on Ray,
DeepSpeed and HF Transformers.

➢Ray helps distribute RL training
across multiple GPUs/CPUs.
➢DeepSpeed optimizes large-scale

model training, making RLHF more
memory-efficient.
➢HF Transformers provide the LLM

backbone for fine-tuning.

https://github.com/OpenRLHF/OpenRLHF 58

Post-Training

• Post-training of LLMs refines pretrained models through techniques like
supervised fine-tuning, instruction tuning, RLHF, DPO, and quantization to
enhance alignment, efficiency, and task performance.

https://towardsdatascience.com/fine-tune-your-own-llama-2-model-in-a-colab-notebook-df9823a04a32/
LLM Post-Training: A Deep Dive into Reasoning Large Language Models

Post-Training

59

Evaluation

• Benchmarks
• Cantonese Benchmark
• GSM-PLUS
• TMGBench
• VL-RewardBench
• Opencompass

60

Benchmarks
Benchmark Focus Area Description Example Metrics

MMLU (Massive Multitask Language
Understanding)

General knowledge & reasoning 57 subjects covering STEM, humanities, social sciences, etc. Accuracy (%)

HellaSwag Commonsense reasoning Tests everyday scenario understanding Accuracy (%)

ARC (AI2 Reasoning Challenge) Logical reasoning Grade-school-level science and reasoning questions Accuracy (%)

GSM8K (Grade School Math 8K) Math reasoning Solving elementary school-level math problems Accuracy (%)

MATH Advanced math Tests high-school & olympiad-level math ability Accuracy (%)

BBH (BigBench Hard) Complex reasoning Harder subset of BigBench tasks, including ethics, social dynamics Accuracy (%)

TruthfulQA Truthfulness Measures resistance to misinformation and factual consistency Truthfulness Score (%)

MT-Bench Multi-turn chat Evaluates LLMs in a conversational multi-turn dialogue setting Score (1-10)

HumanEval Code generation Tests LLMs' ability to write functional code Pass@1 (%)

MBPP (Multi-turn Python Benchmark) Python programming Evaluates Python code generation for multi-turn problem-solving Pass@1 (%)

OpenAI's Chatbot Arena Overall LLM ranking Human preference ranking of chatbot responses Elo Score

AGIEval Human-like intelligence Measures model performance on human exams (SAT, GRE, LSAT, etc.) Score (%)

SuperGLUE NLP general tasks Evaluates performance across a variety of NLP tasks Accuracy (%)

TydiQA Multilingual QA Tests question-answering ability in multiple languages F1 Score

61

Cantonese Benchmark

Designed to evaluate LLM performance in factual generation, mathematical logic,
complex reasoning, and general knowledge in Cantonese, which aim to advance
open-source Cantonese LLM technology.

How Well Do LLMs Handle Cantonese? Benchmarking Cantonese Capabilities of Large Language Models 62

GSM-PLUS

• Adversarial grade school math (GSM-PLUS) dataset, an extension of GSM8K augmented
with various mathematical perturbations.

GSM-PLUS: A Comprehensive Benchmark for Evaluating the Robustness of LLMs as Mathematical Problem Solvers 63

TMGBench

• A benchmark for evaluating the performance of large language models in game
theory scenarios.

TMGBench: A Systematic Game Benchmark for Evaluating Strategic Reasoning Abilities of LLMs 64

VL-RewardBench

• A benchmark spanning general multimodal queries, visual hallucination detection,
and complex reasoning tasks.

VL-RewardBench: A Challenging Benchmark for Vision-Language Generative Reward Models

65

Opencompass

• OpenCompass is an LLM evaluation
platform, supporting a wide range of
models (Llama3, Mistral, InternLM2,GPT-
4,LLaMa2, Qwen,GLM, Claude, etc) over
100+ datasets.

https://github.com/open-compass/opencompass

Metric

Prompt

Dataset

66

Prompt Engineering

• Prompt Engineering
• Ollama
• Zero-shot Prompting
• Few-shot Prompting
• Chain-of-Thought
• Self-Consistency
• Program-Aided Language Models
• Tree-of-Thought
• Structured Outputs
• OpenAI API

67

Prompt Engineering

• Prompt engineering is the
practice of designing and
optimizing prompts to
effectively interact with
large language models
(LLMs). Since LLMs generate
responses based on input
prompts, the way a prompt
is structured significantly
influences the model’s
output quality, relevance,
and coherence. https://www.humanfirst.ai/blog/12-prompt-engineering-techniques

68

Ollama

• Ollama is an open-source framework
designed for running and managing large
language models (LLMs) efficiently on local
machines.

• It provides a lightweight, user-friendly way
to download, deploy, and interact with LLMs
without requiring cloud-based APIs.

https://ollama.com/ 69

Zero-shot Prompting

• Zero-shot prompting is a technique in prompt engineering where a large language
model (LLM) is asked to perform a task without providing any explicit examples.
Instead, the model relies solely on its pre-trained knowledge to generate a
response based on the instructions given in the prompt.

Prompt

Response

70

Few-shot Prompting

• Few-shot prompting is a technique in prompt engineering where a large language
model (LLM) is provided with a small number of examples (usually 1 to a few) to
guide its response to a specific task. This approach helps the model better
understand the desired output format and improves performance compared to
zero-shot prompting.

71

Chain-of-Thought

• Chain-of-Thought (CoT) prompting is a prompt engineering technique that encourages a large
language model (LLM) to generate intermediate reasoning steps before arriving at a final answer.
This approach improves the model’s ability to handle complex reasoning tasks, such as
mathematical problem-solving, logical reasoning, and multi-step decision-making.

I went to the market and bought 10 apples. I gave 2 apples to
the neighbor and 2 to the repairman. I then went and bought 5

more apples and ate 1. How many apples did I remain with?

11

I went to the market and bought 10 apples. I gave 2 apples to
the neighbor and 2 to the repairman. I then went and bought 5

more apples and ate 1. How many apples did I remain with?

Let's think step by step.

First, you started with 10 apples.You gave away 2 apples to the
neighbor and 2 to the repairman, so you had 6 apples left.Then
you bought 5 more apples, so now you had 11 apples. Finally,

you ate 1 apple, so you would remain with 10 apples.

CoT

Zero-shot

72

Self-Consistency

• Self-consistency is an advanced prompting technique used to improve the
reliability of responses generated by large language models (LLMs). Instead of
relying on a single answer, self-consistency works by generating multiple
reasoning paths and selecting the most frequent or consistent answer, reducing
variability and improving accuracy in complex tasks.

Self-Consistency Improves Chain of Thought Reasoning in Language Models 73

Program-Aided Language Models

• Program-Aided Language
Models (PALMs) integrate
traditional language
models with external
program execution,
allowing them to generate
structured solutions by
leveraging symbolic
reasoning, code execution,
or computational tools to
enhance accuracy and
reliability in complex
problem-solving tasks.

PAL: Program-aided Language Models 74

Tree-of-Thought

• Tree-of-Thought (ToT)
prompting is a reasoning
technique for large
language models that
structures problem-
solving as a tree-like
process, where multiple
reasoning paths are
explored, evaluated, and
refined to improve
decision-making and
complex problem-solving
accuracy.

https://medium.com/@nexgenarch/5-advanced-prompting-techniques-to-ace-chatgpt-ac750aa2e01e

Tree of Thoughts: Deliberate Problem Solving with Large Language Models 75

https://medium.com/@nexgenarch/5-advanced-prompting-techniques-to-ace-chatgpt-ac750aa2e01e

Structured Outputs

• Ollama supports structured outputs making it possible to constrain a model’s
output to a specific format defined by a JSON schema.

Python Code

Output

https://ollama.com/blog/structured-outputs 76

Structured Outputs

• Specify the format requirements directly in the prompt.

77

OpenAI API

• The OpenAI Python library provides convenient access to the OpenAI REST API
from any Python 3.8+ application.

https://github.com/openai/openai-python

78

Large Reasoning Models

• Train-time Compute
• Test-time Compute
• Test-time Compute Scaling Laws
• Deepseek-R1
• Reasoning Example
• Distillation

79

Train-time Compute

• To increase the performance of LLMs during pre-training, developers often
increase the size of the:
• Model (# of parameters)
• Dataset (# of tokens)
• Compute (# of FLOPs)

https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-reasoning-llms

80

Test-time Compute

• The paradigm shift from scaling train-time compute to scaling test-time compute.

https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-reasoning-llms
81

Test-time Compute Scaling Laws

• Test-time compute might actually follow the same trend as scaling train-time
compute

https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-reasoning-llms
82

Deepseek-R1

• DeepSeek-R1 is an open-source large
language model developed by the
Chinese AI company DeepSeek, designed
to excel in tasks requiring logical
inference, mathematical reasoning, and
real-time problem-solving.

DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning

https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-reasoning-llms
83

Reasoning Example

84

Distillation

• Distillation is a model compression technique where a smaller student model
learns to replicate the behavior of a larger teacher model by mimicking its
outputs.

https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-reasoning-llms
85

Agent

• LLM-based Agent
• Tools: Tool-Use
• Tools: Function Calling
• Tools: Model Context Protocol
• Planning: ReAct
• Planning: Reflexion
• Application: Retrieval-Augmented Generation (RAG)
• Application: Computer-Using Agent

86

LLM-based Agent

• An LLM-based agent is an AI system that integrates memory, planning, action,
and tool-use modules to autonomously process information, make decisions, and
interact with users or environments efficiently.

https://lilianweng.github.io/posts/2023-06-23-agent/ 87

Tools: Tool-Use

• Tool use in LLMs refers to their ability to integrate external tools, APIs, or plugins
to enhance reasoning, retrieve information, execute actions, and interact with
external systems beyond their pretrained knowledge.

Tool Learning with Foundation Models

Toolformer: Language Models Can Teach Themselves to Use Tools 88

Tools: Function Calling

• Function
calling provides a
powerful and flexible
way for OpenAI
models to interface
with your code or
external services. This
guide will explain how
to connect the models
to your own custom
code to fetch data or
take action.

https://platform.openai.com/docs/guides/function-calling 89

Tools: Model Context Protocol

• MCP is an open protocol that
standardizes how applications
provide context to LLMs.

• MCP provides a standardized way
to connect AI models to different
data sources and tools.

https://x.com/akshay_pachaar/status/1900170408038642058 90

Planning: ReAct

• ReAct is a general paradigm that combines reasoning and acting with LLMs.

ReAct: Synergizing Reasoning and Acting in Language Models
91

Planning: Reflexion

• Reflexion converts feedback (either free-form language or scalar) from the
environment into linguistic feedback, also referred to as self-reflection, which is
provided as context for an LLM agent in the next episode.

Reflexion: Language Agents with Verbal Reinforcement Learning 92

Application: Retrieval-Augmented Generation (RAG)

• Retrieval-Augmented Generation (RAG) enhances language models by retrieving
relevant external information from a knowledge source to improve response
accuracy, factuality, and contextual awareness.

https://blog.roboflow.com/what-is-retrieval-augmented-generation/ 93

Application: Computer-Using Agent

OSWorld: Benchmarking Multimodal Agents for Open-Ended Tasks in Real Computer Environments

• A computing agent is an autonomous system that processes data, executes
tasks, and makes decisions using computational resources, integrating AI
models, planning, and tool-use capabilities.

94

Application: Social Agent

• A social agent is an AI-driven
system designed to interact,
communicate, and
collaborate with humans or
other agents using natural
language, social cues, and
adaptive behaviors.

A Survey on Large Language Model-Based Social Agents in Game-Theoretic Scenarios
95

Multi-Agents

• LLM-based Multi-Agents
• Task Solving: ChatDev
• Simulation: Generative Agents
• MetaGPT
• CAMEL

96

LLM-based Multi-Agents

• Large Language Model-
based multi-agents are AI
systems where multiple
LLM-powered agents
collaborate, communicate,
and coordinate tasks
autonomously, leveraging
specialized roles, memory,
planning, and tool use for
complex problem-solving.

Large Language Model based Multi-Agents: A Survey of Progress and Challenges 97

Task Solving: ChatDev

• ChatDev stands as a virtual
software company that operates
through various intelligent
agents holding different roles,
including Chief Executive Officer,
Chief Product Officer, Chief
Technology Officer, Programmer,
Reviewer, Tester, Art designer.

https://github.com/OpenBMB/ChatDev
98

Simulation: Generative Agents

• Generative agents are AI systems that simulate human-like behaviors by
integrating memory, planning, and adaptive generation to interact autonomously
in dynamic environments.

Generative Agents: Interactive Simulacra of Human Behavior 99

MetaGPT: The Multi-Agent Framework

• MetaGPT is a multi-agent framework that structures large language models
(LLMs) into specialized roles, enabling collaborative problem-solving, task
decomposition, and efficient execution in complex workflows.

https://github.com/geekan/MetaGPT 100

CAMEL

• CAMEL (Communicative Agents for Multi-agent Reinforcement Learning) is a
framework that enables large language models (LLMs) to collaborate through
role-based communication, enhancing coordination and problem-solving in multi-
agent interactions.

https://github.com/camel-ai/camel 101

Conclusion

• We first discussed how to train large

language models, including pretraining

data preparation, tokenization, model

architecture, instruction fine-tuning, RLHF,

and how to evaluate the performance of

large language models.

• Then, we explored prompt engineering

techniques, such as few-shot prompting

and chain-of-thought (CoT).

• Next, we introduced the currently popular

large reasoning models and observed the

potential of reinforcement learning.

• Finally, we presented LLM-based agents

and multi-agent systems, along with their

related applications.

102

Course Project: Survey on Large Language Models (LLMs)

• Conduct a comprehensive survey on any topic related to large language models (LLMs).
• Each group will consist of 2-3 people to write a survey, with a maximum of 3 members.
• Each group will give a 10-15 minute presentation in the final class.
• All surveys must be submitted to xiachongfeng1996@gmail.com by April 21.

• Requirements:
• Paper Format: The survey must be written using the ARR LaTeX/Word template, with a main text

of no less than 8 pages (excluding references and appendices).
• https://github.com/acl-org/acl-style-files

• Independent Research: The survey must be based on original and independent research
conducted by the team. Proper citations and references are required.

• Academic Integrity: Any form of academic misconduct, including plagiarism, excessive reliance on
AI-generated content, or improper paraphrasing, is strictly prohibited. Violations will result in
severe penalties, including project rejection and possible academic disciplinary action.

103

mailto:xiachongfeng1996@gmail.com

Thanks!

104

	默认节
	Slide 1: Hands-on Large Language Models
	Slide 2: Outline

	Pretraining Data
	Slide 3: Pretraining Data
	Slide 4: Common Crawl
	Slide 5: Common Crawl
	Slide 6: FineWeb
	Slide 7: FineWeb Recipe
	Slide 8: FineWeb Recipe: Text Extraction
	Slide 9: FineWeb Recipe: Base filtering
	Slide 10: FineWeb Recipe: Deduplication
	Slide 11: FineWeb Recipe: MinHash Deduplication
	Slide 12: Pretraining Data: Code
	Slide 13: Pretraining Data: Math (Qwen Math Corpus v1)

	Tokenization
	Slide 14: Tokenization
	Slide 15: Tokenization
	Slide 16: Basic: Word-Level Tokenization
	Slide 17: Byte Pair Encoding (BPE)
	Slide 18: Byte Pair Encoding (BPE)
	Slide 19: Note1: Byte-level Byte Pair Encoding (BPE)
	Slide 20: Note2: Independent Module Separate from LLM
	Slide 21: Note3: Visualization Tool for Tokenization
	Slide 22: Minimal Implementation
	Slide 23: Additional:
	Slide 24: Minimal Implementation
	Slide 25: Quirks of LLM Tokenization
	Slide 26: Byte-level LLM: EvaByte
	Slide 27: More Topics

	Transformers
	Slide 28: Transformer
	Slide 29: Transformer
	Slide 30: Attention Mechanism
	Slide 31: Multi-Head Attention
	Slide 32: Visualization
	Slide 33: Python Library
	Slide 34: HuggingFace Transformers
	Slide 35: Different Architectures

	Training
	Slide 36: Pretraining
	Slide 37: Training a Neural Network
	Slide 38: Traditional Training vs Pretraining
	Slide 39: Core Implementation
	Slide 40: GPU
	Slide 41: Memory Usage
	Slide 42: Pretraining Optimization
	Slide 43: Lingua

	Instruction Tuning
	Slide 44: Instruction Tuning
	Slide 45: Instruction Tuning or Supervised Fine-tuning (SFT)
	Slide 46: The Role of Instruction Tuning
	Slide 47: Instruction Data (Text)
	Slide 48: Instruction Data (Math)
	Slide 49: Instruction Data (Code)
	Slide 50: Instruction Data (Multi-modal)
	Slide 51: Instruction Tuning Loss
	Slide 52: Llama-factory

	RLHF
	Slide 53: Reinforcement Learning from Human Feedback
	Slide 54: AI Safety
	Slide 55: Reinforcement Learning from Human Feedback (RLHF)
	Slide 56: PPO and DPO
	Slide 57: DPO Implementation
	Slide 58: OpenRLHF
	Slide 59: Post-Training

	Evaluation
	Slide 60: Evaluation
	Slide 61: Benchmarks
	Slide 62: Cantonese Benchmark
	Slide 63: GSM-PLUS
	Slide 64: TMGBench
	Slide 65: VL-RewardBench
	Slide 66: Opencompass

	Prompt Engineering
	Slide 67: Prompt Engineering
	Slide 68: Prompt Engineering
	Slide 69: Ollama
	Slide 70: Zero-shot Prompting
	Slide 71: Few-shot Prompting
	Slide 72: Chain-of-Thought
	Slide 73: Self-Consistency
	Slide 74: Program-Aided Language Models
	Slide 75: Tree-of-Thought
	Slide 76: Structured Outputs
	Slide 77: Structured Outputs
	Slide 78: OpenAI API

	LRMs
	Slide 79: Large Reasoning Models
	Slide 80: Train-time Compute
	Slide 81: Test-time Compute
	Slide 82: Test-time Compute Scaling Laws
	Slide 83: Deepseek-R1
	Slide 84: Reasoning Example
	Slide 85: Distillation

	Agent
	Slide 86: Agent
	Slide 87: LLM-based Agent
	Slide 88: Tools: Tool-Use
	Slide 89: Tools: Function Calling
	Slide 90: Tools: Model Context Protocol
	Slide 91: Planning: ReAct
	Slide 92: Planning: Reflexion
	Slide 93: Application: Retrieval-Augmented Generation (RAG)
	Slide 94: Application: Computer-Using Agent
	Slide 95: Application: Social Agent

	Multi-agent
	Slide 96: Multi-Agents
	Slide 97: LLM-based Multi-Agents
	Slide 98: Task Solving: ChatDev
	Slide 99: Simulation: Generative Agents
	Slide 100: MetaGPT: The Multi-Agent Framework
	Slide 101: CAMEL

	Conclusion
	Slide 102: Conclusion

	Final
	Slide 103: Course Project: Survey on Large Language Models (LLMs)
	Slide 104

