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Trending of Prompt-based Papers
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http://pretrain.nlpedia.ai/ ARR Nov.



Four Paradigms in NLP
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Fully Supervised Learning
(Non-Neural Network)
Features Engineering
TF-IDF, POS, Length

Domain Adaptation to Summarize Human Conversations
ACL 2010
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Fully Supervised Learning
(Non-Neural Network)
Features Engineering
TF-IDF, POS, Length

Fully Supervised Learning
(Neural Network)

Architecture Engineering
Conv, RNN, Self-Atten



Four Paradigms in NLP
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Fully Supervised Learning
(Non-Neural Network)
Features Engineering
TF-IDF, POS, Length

Fully Supervised Learning
(Neural Network)

Architecture Engineering
Conv, RNN, Self-Atten

Pre-train, Fine-tune
Objective Engineering

MLM, NSP



PLMs
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• Typical paradigms of pre-trained LMs

• Attention mask patterns

• PLMs



Four Paradigms in NLP
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Fully Supervised Learning
(Non-Neural Network)
Features Engineering
TF-IDF, POS, Length

Fully Supervised Learning
(Neural Network)

Architecture Engineering
Conv, RNN, Self-Atten

Pre-train, Fine-tune
Objective Engineering

MLM, NSP

Pre-train, Prompt, Predict
Prompt Engineering



Four Paradigms in NLP
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Pre-train, Fine-tune
Objective Engineering

MLM, NSP

Pre-train, Prompt, Predict
Prompt Engineering
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Prompt Learning



Naïve Prompt Learning
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[CLS] No reason to watch . It was [MASK] . [SEP] 

MLM 
head

great
terrible

Label: positive
Label: negative √

Sentiment
Classification



Two Gaps
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[CLS]	it’s a [MASK]	movie in every regard, and [MASK]	painful to watch . [SEP]

MLM 
head

...
great
terrible
...

Vocab 𝑉

(a) MLM pre-training

[CLS]	No reason to watch . [SEP]

CLS 
head

Label: positive
Label: negative √

Label Space 𝑌

(b) Fine-tuning

Pre-train and Fine-tune Paradigm

Two Gaps

[CLS]	it’s a [MASK]	movie in every regard, and [MASK]	painful to watch . [SEP] [CLS]	No reason to watch . [SEP]

MLM 
head

CLS 
head



Why Prompt Learning?
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[CLS]	it’s a [MASK]	movie in every regard, and [MASK]	painful to watch . [SEP]

MLM 
head

great
terrible

Vocab 𝑉

(a) MLM pre-training

[CLS]	No reason to watch . [SEP]

CLS 
head

Label: positive
Label: negative √

Label Space 𝑌

(b) Fine-tuning

Pre-train and Fine-tune Paradigm

Prompt Tuning

[CLS]	it’s a [MASK]	movie in every regard, and [MASK]	painful to watch . [SEP] [CLS]	No reason to watch . [SEP]

MLM 
head

CLS 
head

[CLS] No reason to watch	.	It	was	[MASK]	.	[SEP]	

Label Mapping 𝑀(𝑦)

...

...

great
terrible

Label: positive
Label: negative √

(
(

)
)



Notation of Prompt Learning
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Input	𝒙:	I	love	this	movie.	

Prompt	𝒙!: I	love	this	movie,	it	was	a	[z] movie.

[x] ,	it	was	a	[z] movie.

Filled	Prompt
I	love	this	movie,	it	
was	a	bad movie.

Answered	Prompt
I	love	this	movie,	it	
was	a	good movie.

Prompt	Function:𝒇 𝐩𝐫𝐨𝐦𝐩𝐭 (𝒙)

Input	𝒙:	One or multiple texts

Prompt	Function	𝒇 : A function that converts the 
input into a specific form by inserting the input x and 
adding a slot [Z] where answer z may be filled later.

Prompt:	A text where [X] is instantiated by input 
x but answer slot [Z] is not.

Filled	Prompt:	A prompt where slot [Z] is filled 
with any answer.
Answered	Prompt:	A prompt where slot [Z] is 
filled with a true answer.

Answer
Answer:		A token, phrase, or sentence that fills [Z]

Answer	𝒁àLabel:	𝒀 Good: Positive
Bad: Negative

Answer	Mapping



Examples
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Two Key Components

17Input	𝒙:	I	love	this	movie.	

Prompt	𝒙!: I	love	this	movie,	it	was	a	[z] movie.

[x] ,	it	was	a	[z] movie.

Filled	Prompt
I	love	this	movie,	it	
was	a	bad movie.

Answered	Prompt
I	love	this	movie,	it	
was	a	good movie.

Prompt	Function:𝒇 𝐩𝐫𝐨𝐦𝐩𝐭 (𝒙)

Answer

Answer	𝒁àLabel:	𝒀 Good: Positive
Bad: Negative

Prompt Engineering

Answer Engineering
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Prompt Engineering



Prompt Engineering
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Prompt
Engineering

Shape
Cloze

Prefix

This movie is interesting, It’s a [z] movie.

This movie is interesting…., TL,DR, [z]…

Human

Auto

Effort
Discrete

Continuous

𝑤&, 𝑤',… 𝑤(

Cloze or Prefix?

Human or Auto? Discrete or Continuous?



Prompt Engineering
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Mining-based and Paraphrasing-based
How Can We Know What Language 

Models Know?

Gradient Searching
AUTOPROMPT: Eliciting Knowledge 

from Language Models with 
Automatically Generated Prompts

Prompt-tuning
Exploiting Cloze Questions for Few 
Shot Text Classification and Natural 

Language Inference

Differentially Optimized

Manually created prompts
Automatically created prompts

GPT Understands, Too

Learning How to Ask: Querying 
LMs with Mixtures of Soft Prompts

Factual Probing Is [MASK]: 
Learning vs. Learning to Recall

In-context learning
Language Models are Few-Shot 

Learners (GPT-3)
Using Separate Model

Making pre-trained language models 
better few-shot learners.
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Answer Engineering



Answer Engineering
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Filled	Prompt
I	love	this	movie,	it	
was	a	bad movie.

Answered	Prompt
I	love	this	movie,	it	
was	a	good movie.

Answer

Answer	𝒁àLabel:	𝒀 Good: Positive
Bad: Negative
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Papers
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GPT-3

Prompt Engineering

Answer Engineering

Human + Discrete

Token, Span, Sent

Language Models are Few-Shot Learners



Text Classification

25Benchmarking Zero-shot Text Classification: Datasets, Evaluation and Entailment Approach, EMNLP 2019

Topic detection

Emotion detection

Situation detection

this text is about {“health”, “finance”, “politics”, “sports”, etc.}

this text expresses {“anger”, “joy”, “sadness”, “fear”, etc.} 

the people there need {“shelter”, “water”, · · · } 

Prompt Engineering

Answer Engineering

Cloze + Human + Discrete

Token + Human + Discrete[CLS] No reason to watch . It was [MASK] . [SEP] 

MLM 
head

great
terrible

Label: positive
Label: negative √

Sentiment
Classification



Text Classification: LM-BFF

26Making Pre-trained Language Models Better Few-shot Learners

T5 Objective

LM-BFF: Generate Prompt



Knowledge Mining
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Language Models as Knowledge Bases?
Language Models are Open Knowledge Graphs



Knowledge Mining: P-Tuning
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PLMs
(GPT, BERT,…)

Prompt Generator

The capital of Britain is [MASK]

e(The) e(capital) e(of) e(Britain)e(is) e([MASK])

Discrete
rewards

PLMs
(GPT, BERT,…)

Prompt Encoder

capital Britain

Back
Propagation[P0] [Pi] [Pi+1] [Pm]… …

h0 hi… hm…hi+1e(cap) e(Bri)

[MASK]

e([MASK])

P-tuningDiscrete Prompt Learning

GPT Understands, Too



NER

29Template-Based Named Entity Recognition Using BART, Findings of ACL 2021

Sequence Labeling

Encoder Decoder

ACL will be held in Bangkok

𝑥" 𝑥# 𝑥$ 𝑥% 𝑥& 𝑥'

<s> Bangkok is a Location

𝑡" 𝑡# 𝑡$ 𝑡% 𝑡&

<s> 〈 candidate_span 〉 is a 〈 entity_type 〉Template: entity

𝑡# 𝑡$ 𝑡% 𝑡& 𝑡'

Bangkok is a Location entity

Encoder

ACL will be held in Bangkok

𝑥" 𝑥# 𝑥$ 𝑥% 𝑥& 𝑥'

ℎ" ℎ# ℎ$ ℎ% ℎ& ℎ'

Softmax/CRF

𝑙" 𝑙# 𝑙$ 𝑙% 𝑙& 𝑙'

O O O O O B-LOC

ACL will be held in Bangkok

ACL will be held in Bangkok

ACL will be held in Bangkok

Bangkok is a Location entity

Bangkok is a person entity

Bangkok is not a entity

ACL will is a Location entity

ACL will is a person entity

ACL will is not a entity

(scoring: 0.1)

(scoring: 0.3)

(scoring: 0.8)

(scoring: 0.9)

(scoring: 0.1)

(scoring: 0.1)

Training

Testing

Prompt Engineering

Answer Engineering
Cloze + Human + Discrete

Token + Human + Discrete



Relation Extraction

30KnowPrompt: Knowledge-aware Prompt-tuning with Synergistic Optimization for Relation Extraction

[CLS] [E2] Steve Jobs [/E2], co-founder of [E1] Apple [/E1] [SEP] Apple           [MASK] Steve Jobs           [SEP][sub] [sub] [obj] [obj] 

MLM HEAD

[sub] 
person

organization

date
[obj] 

person

organization

date

Entity
Knowledge
Injection

1024 x 30000

1024 x 30005
Relation 

Embedding Head

Relation 
Embedding Head

per : countries_of_residence Person

countries residence

Relation
Knowledge
Injection [obj] [sub] REL+ -|| ||

knowledge embedding (KE)

Prompt Engineering

Answer Engineering
Cloze + Auto + Continuous

Token + Auto + Continuous



Text Generation

31Prefix-Tuning: Optimizing Continuous Prompts for Generation, ACL 2021

Decoder

Fine-tuning

Document

Summary

Encoder

Decoder

Prefix-tuning

Document

Summary

EncoderPrefix Prefix Decoder

Summary

Prefix

Document

Prompt Engineering

Answer Engineering

Prefix+ Auto + Continuous

Sent + Discrete



Cross-modal
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A woman is [MASK] the horse [SEP][CLS][IMG]

MLM 
head

...
watching
riding
...

Vocab 𝑉

(a) pre-training

...

The horse watched by the woman [SEP][CLS][IMG]

...
Label: positive
Label: negative
...

Label 𝑌

(b) fine-tuning

...

... ... CLS 
head

CPT: Colorful Prompt Tuning for Pre-trained Vision-Language Models



Cross-modal
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The horse watched by the woman [SEP][CLS][IMG] [MASK]

MLM 
head

...
word1
word2
...Vocab 𝑉

Image Regions Query Text Query Template

...

How to distinguish these two horses in the vocab?

(c) Cross-modal Prompt Tuning
CPT: Colorful Prompt Tuning for Pre-trained Vision-Language Models



Cross-modal
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The horse watched by the woman [SEP][CLS][IMG] is in [MASK] color

MLM 
head

...
red
blue
...Vocab 𝑉

Image Regions Query Text Query Template

By color!

Colorful 
Prompt 
Tuning

CPT: Colorful Prompt Tuning for Pre-trained Vision-Language Models



Part Conclusion
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PLMsPrompt Downstream Tasks



Thanks~


