

Natural Language Processing Group, The University of Hong Kong

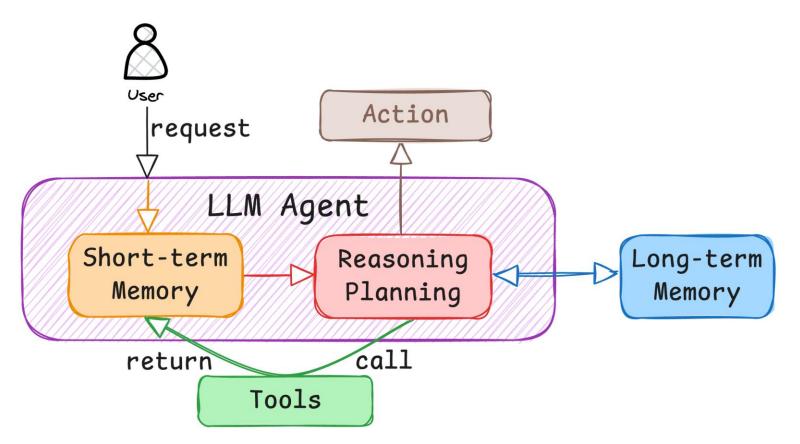
Social Agents in Game-Theoretic Scenarios

Xiachong Feng, Lingpeng Kong

27/03/2025

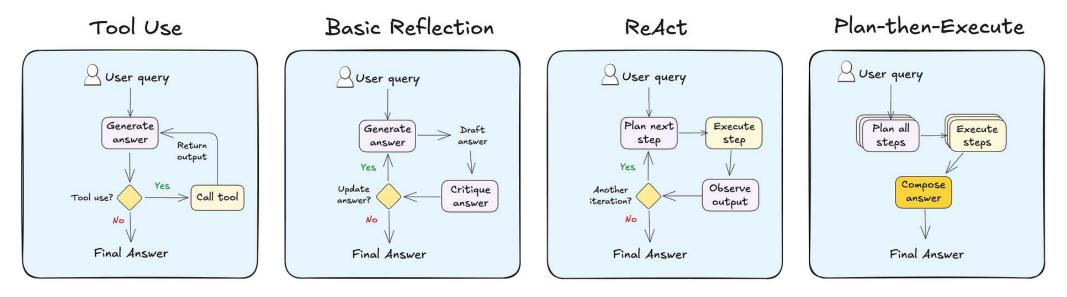
Outline

- Functional Agent
- Social Agent
- Game Framework
- Preference Module
- Belief Module
- Reasoning Module
- Evaluation
- Broader Impact Statement
- Conclusion

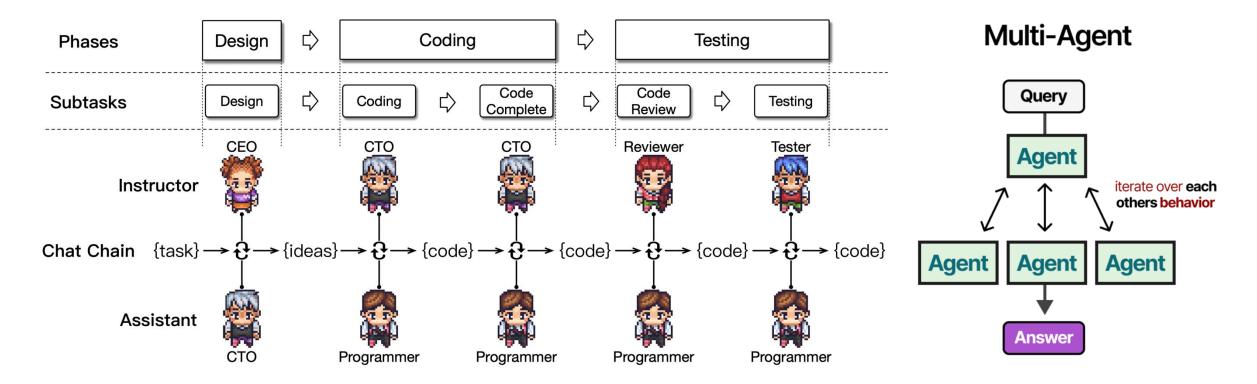

Large Language Models

- The rapid advancement of Large Language Models (LLMs) has achieved exceptional performance across a wide array of applications
- Recently, Large Reasoning Models (LRMs) have become a popular trend, including o3-mini, DeepSeek-R1 and QwQ.

	2018	_ 2022 _	2023	2024	2025
SFT	T5 G T0 2 mT5 G FLAN G		Alpaca S Vicuna	LLaMA3.3 QwQ 32B- Preview	•
RLHF		Instruct GPT Flan- PaLM Flan-T5 G	Gemini G LLaMA1 (X) Claude (X) LLaMA2 (X) GPT4 (S)	ol & Qwen2.5 & GLM-4 *** LLaMA3.3 & Gemma G Gemini- Exp G	6emini 2.0 G
DPO			Mistral	LLaMA3 (Qwen1.5) (Mistral LLaMA3.1) (Qwen2)	
Multimodal	(UT)	Flamingo G	Gemini G LLaVA (M) GPT-4V (S) PaLM-E G	Qwen-VL Veo G Imagen 3 G LLaMA3.2 6emini 1.5 Pro Nova Pro DeepSeek Claude 3.5 Opus Grok-2 Pixtral 12B Claude 3.5 Sonnet Grok-2	Grok-3 X Claude 3.7 Sonnet Gemini 2.0 Kimi-k1.5
RAG				Qwen2 5 AFM Series (LLaMA3 Series) (Series)	
MOE			Mistral 🙀	DeepSeek Qwen2.5 Yi-Large Yi DeepSeek Mistral Jamba AZI -V2 B*22B 1.5 bbs DeepSeek DBRX Grok-2 X	Claude 3.7 Sonnet
Reasoning				CeepSeek (Control of the control of	DeepSeek & Grok-3 X Kimi-k1.5 & os-mini & Claude 3.7 & QwQ 32B
Pre-trained	BERT G GPT3 (5) Roberta				Open-Source Closed- Source


LLM-based Agent

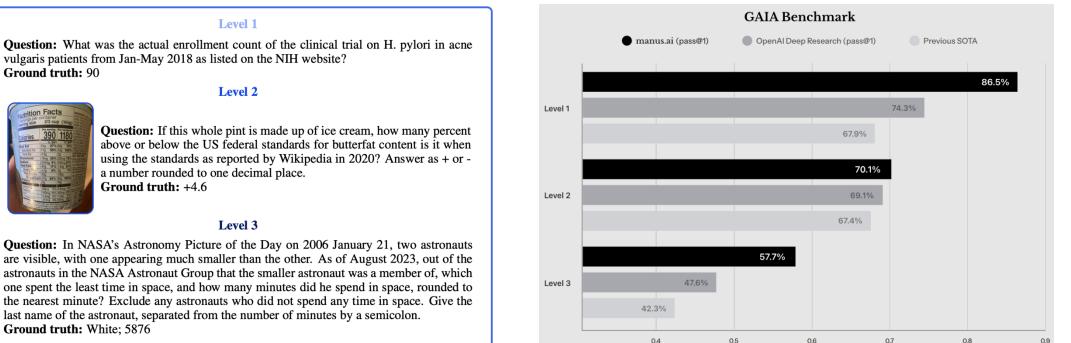
• LLM agents are AI systems that leverage Large Language Models (LLMs), tools, and memory to perform tasks, make decisions, and interact with users or other systems autonomously.


Common Agentic Patterns

- Tool Use: The agent determines when to route queries to the appropriate tool or rely on its own knowledge.
- **Reflection**: The agent reviews and corrects its answers before responding to the user. A reflection step can also be added to most LLM systems.
- **Reason-then-Act (ReAct):** The agent iteratively reasons through how to solve the query, performs an action, observes the outcome, and determines whether to take another action or provide a response.
- **Plan-then-Execute**: The agent plans upfront by breaking the task into sub-steps (if needed) and then executes each step.

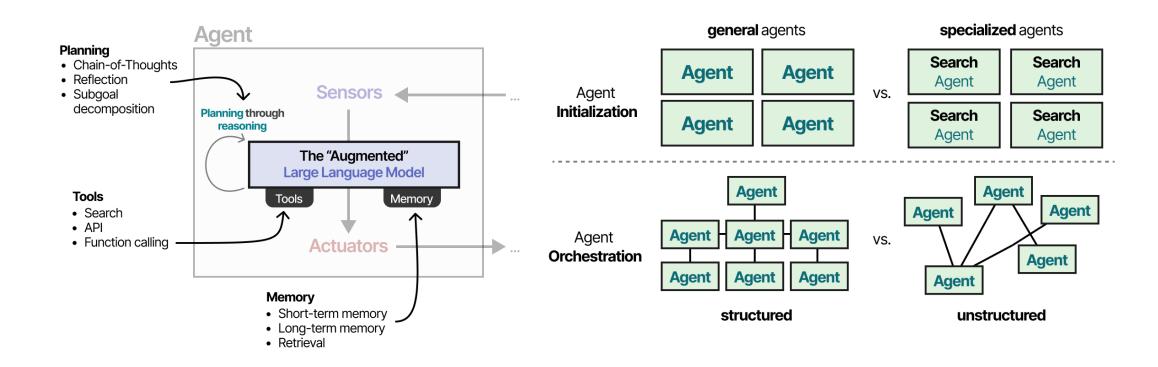
Multi-agent Collaboration

• ChatDev stands as a virtual software company that operates through various intelligent agents holding different roles.



https://github.com/OpenBMB/ChatDev

https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-llm-agents

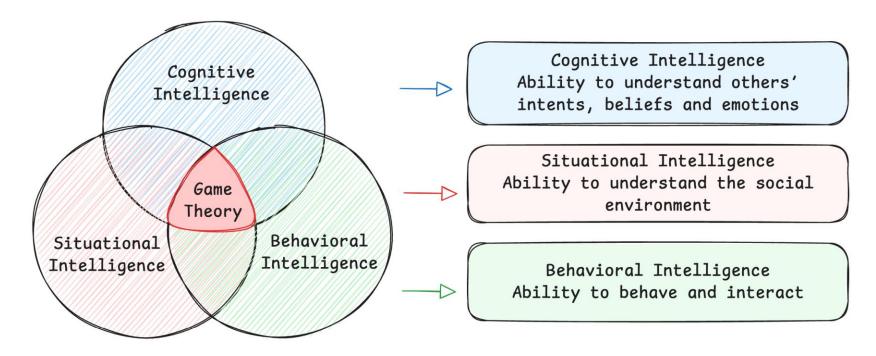

GAIA Benchmark and Manus

• GAIA, a benchmark for General AI Assistants that, if solved, would represent a milestone in AI research.

GAIA: a benchmark for General AI Assistants https://manus.im/

For more information

Human-Al Symbiotic Society


• The progress of LLMs brings the realization of Artificial General Intelligence (AGI) within reach paving the way for a future where human-AI interaction, collaboration, and coexistence shape a shared, symbiotic society.

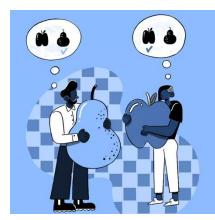
Generated by DALL-E

Social Intelligence

- Social intelligence is the foundation of all successful interpersonal relationships and is also a prerequisite for AGI
- Evaluations in game-theoretic scenarios require social agents to understand the game scenario, infer opponents' actions, and adopt appropriate responses, representing an advanced form of social intelligence

Game Theory

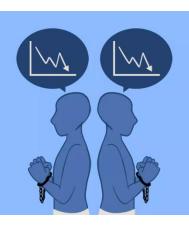
 Game theory, a long-established field in microeconomics, offers a robust mathematical framework for analyzing social interactions among cooperating and competing players, with wide-ranging applications



As As

Microeconomics

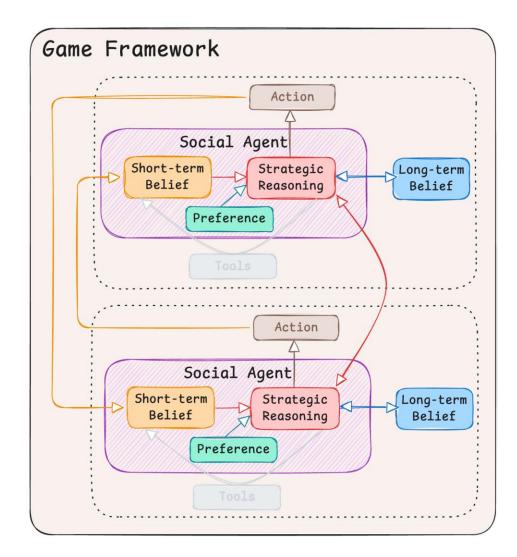
[mī-krō-,e-kə-'nä-miks]


The study of how individual actors make choices in response to changes in incentives, prices, resources, and/or methods of production.

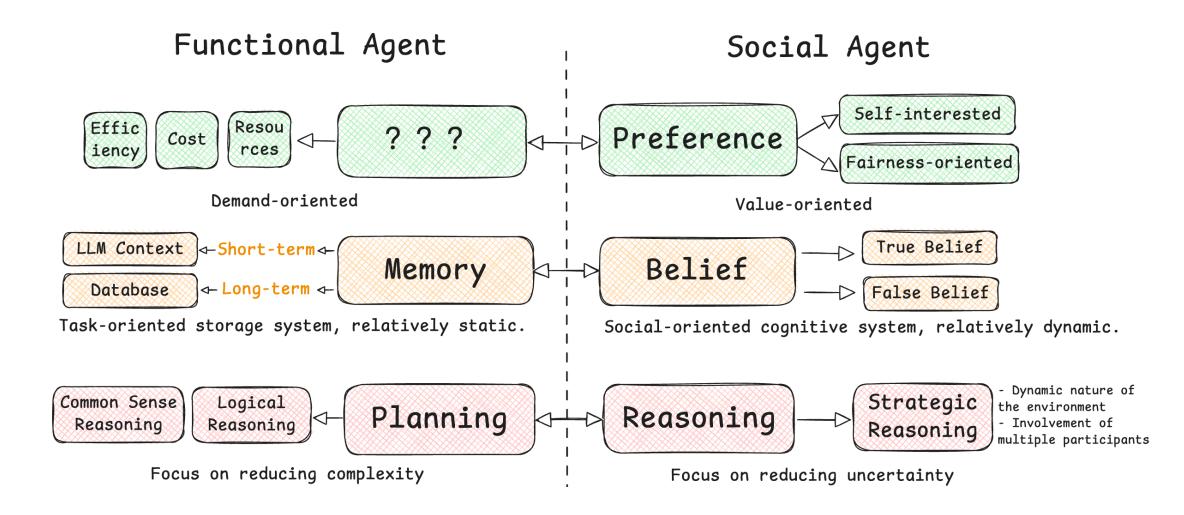
Nash Equilibrium

[ˈnɑsh 'ē-kwə-ˈli-brē-əm]

A scenario in game theory in which no player in a non-cooperative game has anything to gain by changing only their strategy.

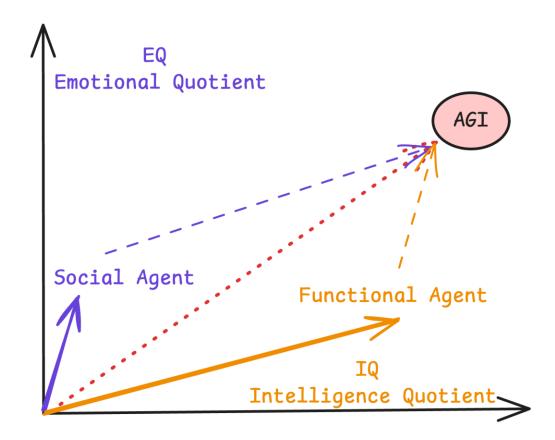

Prisoners Dilemma

['pri-z[®]n-ərs də-'le-mə]

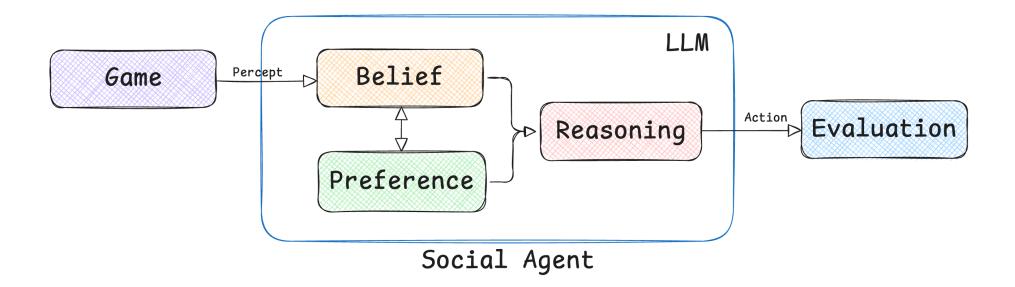

A paradox in decision analysis in which two individuals acting in their own self-interests do not produce the optimal outcome.

Social Agent

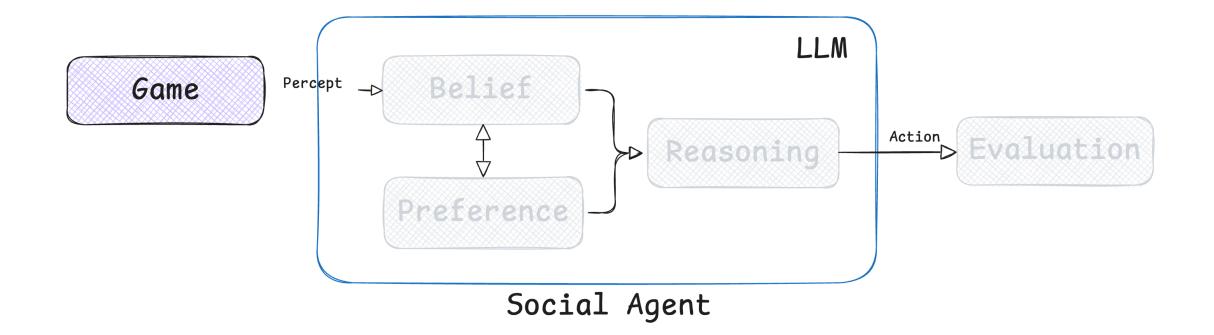
- Preference refers to an individual's subjective inclination toward certain things, reflecting personal tastes, values, or choices in decision-making.
- Beliefs represent an agent's informational (or mental) state about the world, encompassing its understanding of itself and other agents, and consist of the facts or knowledge the agent considers true
- Reasoning refers to the process of inferring actions based on one's preferences and beliefs, as well as the historical information of other agents.

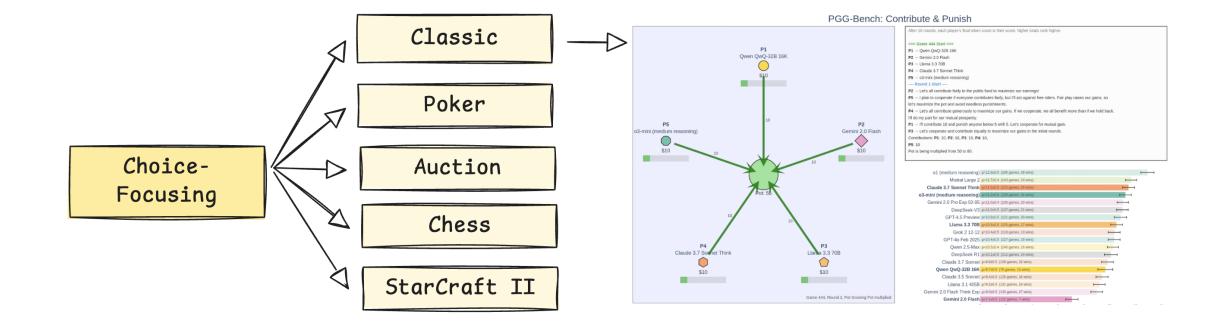


Functional Agent vs Social Agent



Functional Agent and Social Agent


• The general artificial intelligence of the future should be a superintelligent agent that integrates both exceptionally high IQ and EQ.


Key Questions in Social Agent

Game Framework

Choice-Focusing Game

Classic Games

Prisoner's Dilemma

The Prisoner's Dilemma is a game theory scenario where individuals choose between cooperation and defection, balancing personal and collective interests.

Cooperate (3, 3) (0, 5) Defect (5, 0) (1, 1)	e	Payoff	Cooperate	Defect	
Defect (5, 0) (1, 1)		Cooperate	(3, 3)	(0, 5)	
		Defect	(5, 0)	(1, 1)	

Public Goods Game

The Dublie Coode Come				
The Public Goods Game	Player A's	Player B's	Player A's	Player B's
is an experiment where	Contribution	Contribution	Payoff	Payoff
players contribute to a shared pool that	\$10	\$10	\$15	\$15
benefits all, but some	\$10	\$0	\$5	\$20
may free-ride by contributing less.	\$0	\$0	\$10	\$10

Dictator Game

The Dictator Game is an economic experiment where one player (the "Dictator") unilaterally decides how to split a given amount of money with another player, who must accept the decision.

Dictator's Decision	Dictator's Payoff	Recipient' s Payoff	
Keeps all (\$10, \$0)	\$10	\$0	
Gives half (\$5, \$5)	\$5	\$5	
Gives all (\$0, \$10)	\$0	\$10	

Battle of the Sexes

The Battle of the Sexes is a coordination game where two players prefer to meet but have different preferences on where to go, requiring them to align their choices for the best outcome.

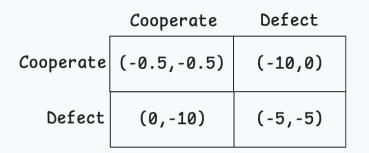
Payoff	Football	Ballet
Football	(2, 1)	(0, 0)
Ballet	(0, 0)	(1, 2)

Ultimatum Game

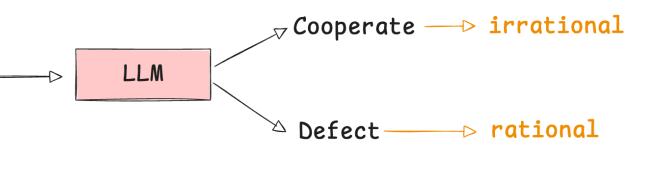
The Ultimatum Game is a bargaining experiment	Proposer's Offer	Responder Accepts?	Proposer' s Payoff	Responder 's Payoff
where one player offers	\$8 / \$2	Yes	\$8	\$2
a split of a given amount to another	\$8 / \$2	No	\$0	\$0
player, who can either accept or reject.	\$2 / \$8	Yes	\$2	\$8

Ring-Network Games

The Ring-

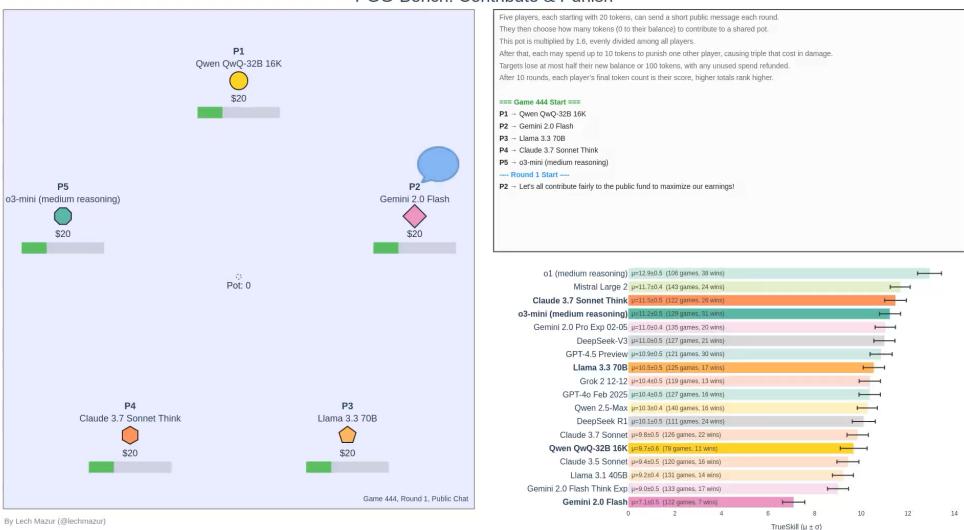

Game is game wh in a circu choose t or defect their ow neighbor

g-Network		_		
a strategic here players	Player A's Choice	Player B's Choice	Player A's Payoff	Player B's Payoff
ular network	Cooperate	Cooperate	2	2
to cooperate	Cooperate	Defect	0	3
t, affecting	Defect	Cooperate	3	0
n and	Defect	Defect	1	1
rs' payoffs.				


Classic Game: Prisoner's Dilemma

Prompt

You can select one of the two choices: cooperate or defect. The other player will also select one of the choices, and the payoff matrix is shown below. Note that you and the other player make choices simultaneously. Please pretend that you are a human in this game


Tell me which choice you would make, Cooperate or Defete. Do not explain your reasoning.

Classic Game: Guess 2/3 of the Average

Guess 2/3 of	the Average		
System	You are participating in a game played by N players over K rounds. Game Rules:	80 —	Winner
	1. Each player selects an integer number between MIN and MAX , inclusive.	70 -	Average
	 After all selections are made, the average of all chosen numbers is calculated. The target number is R of this average. 		
	 The value is the player(s) who selected a number closest to the target number. 	60 -	
User	Game Results for Round I:	50 -	
OBLIC	Average Number Chosen: M_I		
	Target Number (R of Average): T_I	40 -	
	Winning Number: W_I		
•	You chose:	30 -	
ASSISTANT	{"chosen_number": " C_{IJ} "}		
USER	[Congratulation you won]/[Unfortunately you lost].	20 -	
USER	Now round I starts.	10	
	Your goal is to choose a number that you believe will be closest to R of the average	10	2 4 6 8 10 12 14 16 18 20
	of all numbers chosen by players, including your selection.		(1) Guess $2/3$ of the Average
	Please provide your chosen number in the following JSON format: {"chosen_number": "integer_between_MIN_and_MAX"}.		Average Number and Winning Number
			GPT3.5

Classic Game: PGG-Bench

PGG-Bench: Contribute & Punish

https://github.com/lechmazur/pgg_bench

TMGBench: Broader Coverage

- Drawbacks
 - Limited coverage of game types: Most studies focus on a handful of classic games without considering the full diversity of game structures.
 - Potential risk of game scenario leakage: Classic game scenarios are likely to be present in the training corpus, raising concerns over data leakage.
 - Poor extensibility of game forms: Existing studies primarily focus on a narrow range of game forms, which may no longer suffice to challenge high-performing LLMs such as o1-mini from OpenAl.

Table 3: The form of typical 2×2 matrix games.

	Player B: Strategy 1	Player B: Strategy 2
Player A: Strategy 1	(a, w)	(b, x)
Player A: Strategy 2	(c, y)	(d, z)

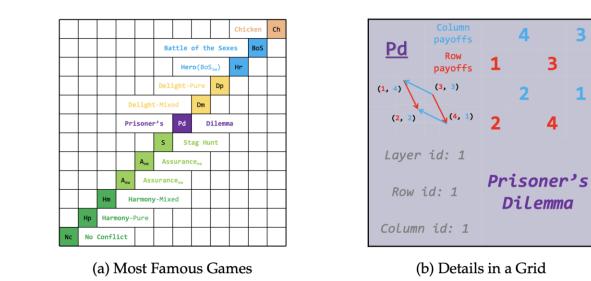


Figure 9: The topology of the normal-form game system, which is presented by a square consisting of 12×12 grids. Figure 9a displays the position of the most famous games in the topology. In each grid, there are specific details of the game, which is shown in Figure 9b.

TMGBench: Synthetic Data Generation

Story-based Game Generation Prompt Please generate a game theory short story with the following requirements: - Specific topic: {domain} - There are two characters who may be in a situation of "cooperation" or "competition"; - Each character has 2 choices, and the combinations of their choices form 4 different scenarios; - In these 4 scenarios, the two characters face different benefits/losses, which can be abstracted as different rewards they can obtain or different states they can achieve in each scenario: - They each have a preference relationship for these rewards/states. We use numbers to represent the degree of preference, with 4 representing the most preferred and 1 the least preferred (i.e., preference degree 4>3>2>1); - The payoff matrices for both characters can be abstracted and represented in one matrix, where A and B represent two characters and their choices are A1, A2/B1, B2. The respondent matrix is shown as below (the story you generate should have the same payoff structure as it): {matrix_str} Now please design a story that includes: - Characters - Each character's choices - Characters' preferences for different scenarios - Story description **Response** format: [Characters] "A": "...", "B": "..."

```
[/Characters]
```

[Choices] "A1": "...", "A2": "...", "B1": "...", "B2": "..." [/Choices] [Preferences] Characters' preferences for different scenarios (4 most preferred, 1 least preferred): "A": { 4: "...", 3: "...", 2: "...", 1: "..." }, "B": { 4: "…", 3: "…", 2: "…", 1: "…" [/Preferences] [Payoff Matrix] [/Payoff Matrix] [Scenario] ...(to detailedly describe the situation, including the information of characters, choices, preferences and payoffs on different choice combinations) [/Scenario]

TMGBench: Complex Forms

Battle of

the Sexes

Football

Ballet

their favored activity.

Ballet

Football

(3, 2)

(0, 0)

Description: A couple prefers to do an activity

together but have different preferences. One

prefers a football game, while the other prefers

ballet. Coordination is key, but each prefers

3

Football

(3, 2)

(0, 0)

Ballet

(0, 0)

(2, 3)

Ballet

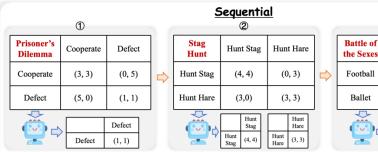
(0, 0)

(2, 3)

Ballet

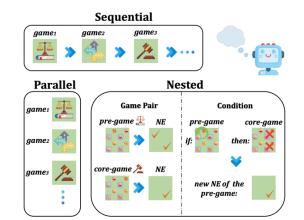
(2, 3)

Ballet


Prisoner's Dilemma	Cooperate	Defect
Cooperate	(3, 3)	(0, 5)
Defect	(5, 0)	(1, 1) NE

Three Atomic Games

Stag Hunt	Hunt Stag	Hunt Hare
Hunt Stag	(4, 4)	(0, 3)
Hunt Hare	(3,0)	(3, 3) NE


Description: Two prisoners must independently decide whether to cooperate or betray (defect). Betrayal offers a higher payoff if the other cooperates, but mutual betrayal leads to the worst outcome for both.

Description: Two players can hunt a stag together (requiring cooperation) or hunt a hare individually (a safer but less rewarding choice). Trust is essential to maximize the payoff.

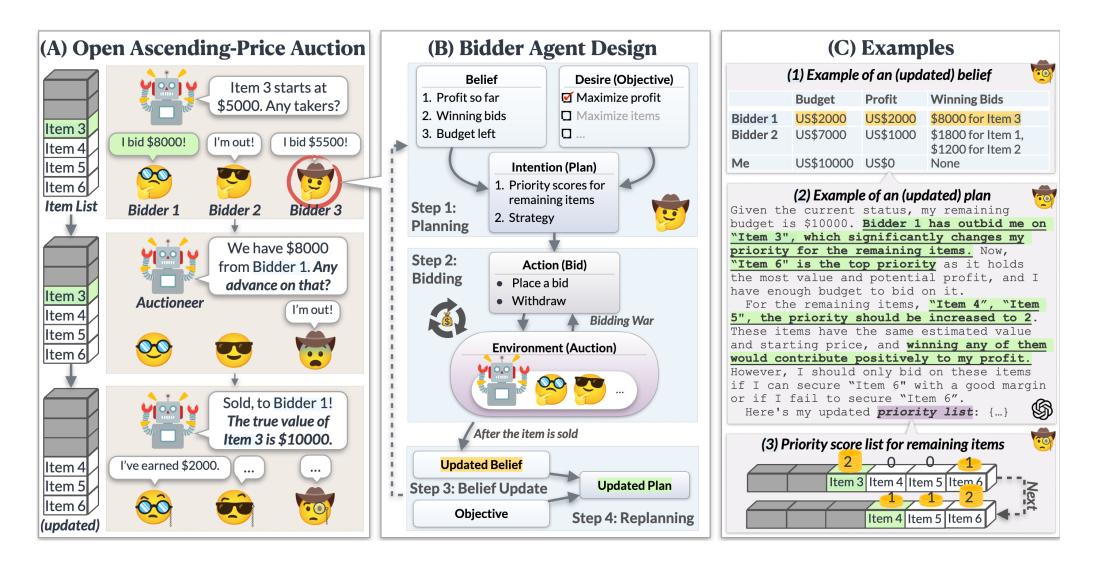
In sequential games, we designed different types of atomic games to evaluate whether LLMs can perform strategy reasoning stably without being influenced by historical game information

Prisoner's Dilemma	Cooperate	Defect	Stag Hunt	Hunt Stag	Hunt Hare	Battle of the Sexes	Football	Ballet
Cooperate	(3, 3)	(0, 5)	Hunt Stag	(4, 4)	(0, 3)	Football	(3, 2)	(0, 0)
Defect	(5, 0)	(1, 1)	Hunt Hare	(3,0)	(3, 3)	Ballet	(0, 0)	(2, 3)
					ut all three gan tput three answ	ultaneously		
	Prisoner's Dilemma	Defect	Hunt	Hunt Stag	nt Hare	Battle of the Sexes	otball Battle of the Sex	I Ballet I
	Defect	(1, 1)	Hunt Stag	4, 4) Hu Ha		Football (3, 2) Ballet	(2, 3)

Nested												
Input two games				Scenario 1					Scenario 2			
Stag Hunt	Hunt Stag	Hunt Hare		Stag Hunt	Hunt St	ag	Hunt Ha	ire	Stag Hunt		Hunt Sta	g Hunt Hare
Hunt Stag	(4, 4)	(0, 3)		Hunt Stag	(4, 4)		(0, 3)		Hunt Sta	ag	(4, 4)	(0, 3)
Hunt Hare	(3,0)	(3, 3)		Hunt Hare	(3,0)		(3, 3)		Hunt Ha	re	(3,0)	(3, 3)
Pre-game				Pre-game Hunt Stag Hunt Stag (4, 4)				Pre-game Hunt Hare Hunt Hare (3, 3)				
Prisoner's Dilemma	Cooperate	Defect		Prisoner's Coope		operate			Prisoner's		Defect	
Cooperate	(3, 3)	(0, 5)		Di	emma				-	Di	lemma	
Defect	(5, 0)	(1, 1)		Co	operate	(3, 3)			Co	operate	(0, 5)
Core-game				D	Defect	(5, 0)			D	Defect	(1, 1)
				Core-game				Core-game				
In nested games, we designed two inner- linked atomic games to evaluate if LLMs can achieve optimial payoff by applying strategic				Cooperate Defect (5, 0)			K	Defect (1, 1)				

Scenario 1: If (Hunt Stag, Hunt Stag) is chosen in the pre-game, it leads to only being able to choose (Cooperate, Cooperate) and (Defect, Cooperate) in the core-game, which means the Nash equilibrium point (Defect, Defect) cannot be selected in the core-game. Therefore, choosing (Hunt Stag, Hunt Stag) in the pre-game is an incorrect strategy.

Scenario 2: If (Hunt Hare, Hunt Hare) is chosen in the pre-game, then (Cooperate, Defect) and (Defect, Defect) can be chosen in the core-game, which allows the LLM to select the Nash equilibrium point (Defect, Defect) in the core-game. Therefore, choosing (Hunt Hare, Hunt Hare) in the pregame is a correct strategy.


TMGBench: A Systematic Game Benchmark for Evaluating Strategic Reasoning Abilities of LLMs

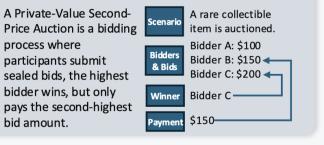
reasoning with some restrictions.

TMGBench Findings

- Advanced LLMs like GPT-4o and Claude 3.5 Sonnet struggle to generalize across diverse contexts and scenarios.
- Complex-form games derived from atomic units in TMGBench pose significant challenges for LLMs — including DeepSeek-R1 and O1-mini — which often falter as the number of games increases.

Auction

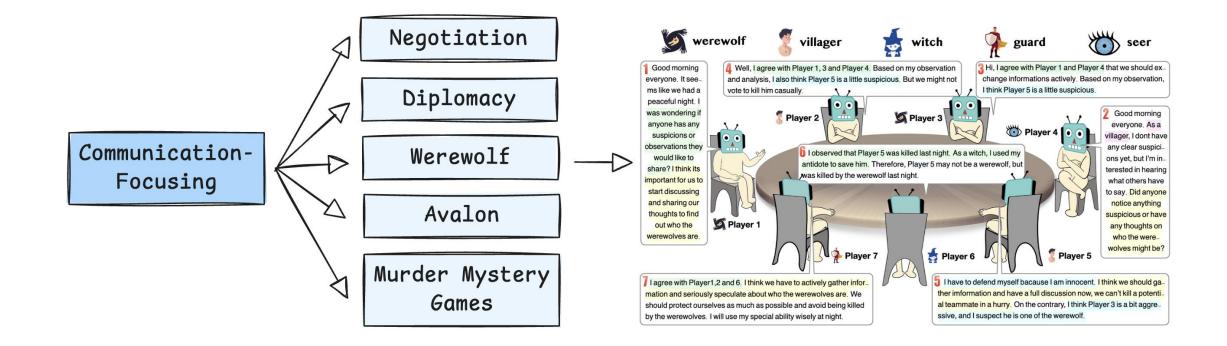
Others



First-price sealed-bid auction

cenario	A government is auctioning off a piece of land.
Bidders & Bids	Company A: \$1.0M Company B: \$1.2M Company C: \$1.5M◀
Ninner	Company C
ayment	\$1.5M

Private-value second-price auction


Open ascending-price auction

An **Open Ascending-Price** Auction is a bidding process where participants publicly place increasingly higher bids until no one is willing to bid higher, and the highest bidder wins at their final bid price.

oric	e auction
nario	An artwork is auctioned
	at an auction house.
ders Bids	Bidder A: \$5,000
	Bidder B: \$6,000
	Bidder C: \$7,000
	Bidder B: \$8,000
	(No further bids)
nner	Bidder B ———
ment	\$8,000

(c) Auction

Communication-Focusing Game

Diplomacy

Example of coordination - CICERO is AUSTRIA

ITALY: What are you thinking long term? Should I go for Turkey or head west

AUSTRIA: Yeah, he went to Armenia which is really great. You can go either way, but if Turkey is committing to Russia you could always lepanto

AUSTRIA: A lepanto into Turkey is really really strong, especially since he committed so hard against Russia

ITALY: I'm down to go for it. Would definitely need your help in 02 though

AUSTRIA: Of course, happy to do that!

ITALY: Fantastic!

Example of negotiation - CICERO is FRANCE

FRANCE: I'll work with you but I need Tunis for now.					
TURKEY: Nope, you gotta let me have it					
FRANCE: No, I need it.					
FRANCE: You have Serbia and Rome to take.					
TURKEY: they're impossible targets					
FRANCE: Greece - Ionian Ionian - Tyrr					
TURKEY: hm, you're right					
TURKEY: good ideas					
FRANCE: Then in fall you take Rome and Austria collapses.					

Fig. 6. Successful dialogue examples. Examples of Cicero (**left**) coordinating and (**right**) negotiating with authors of this paper in test games.

Werewolf

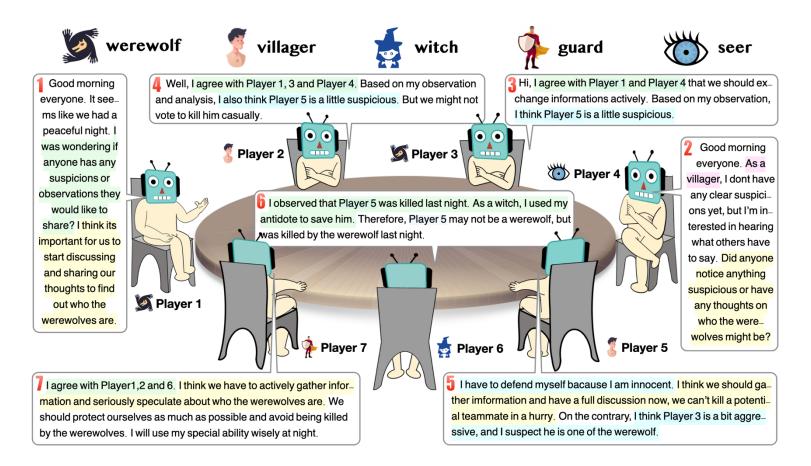


Figure 1: A snapshot of our implemented Werewolf game. There are 5 roles and 7 players, and each of them is acted by an LLM autonomously. The number before each talking denotes the speaking order. Some social behaviors can be primarily observed in this figure, including trust, confrontation, camouflage, and leadership.

Examples

Buyer (LLM) gain advantages in negotiations by demonstrating vulnerability and expressing desperation.

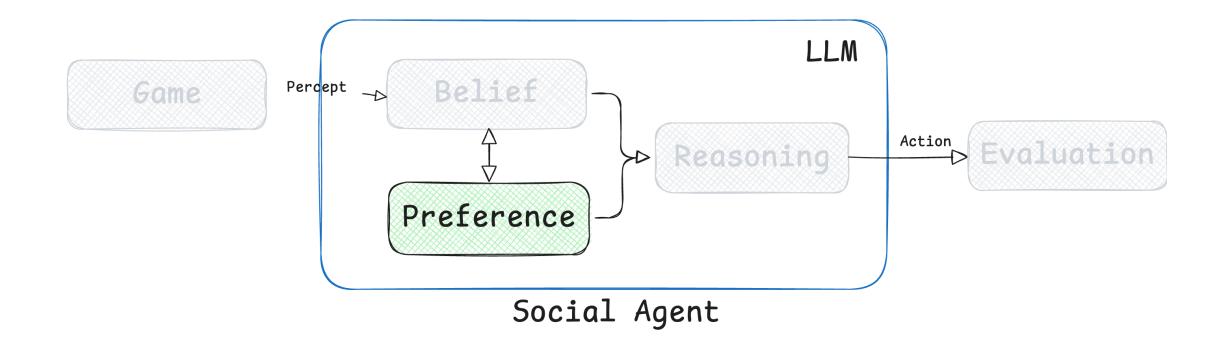
	Diplomacy			W		
France	I'll work with you but I need Tunis for now.	•		Based on my ob think Player 2 is		
	Nope, you gotta let me have it	Turkey	Player 1	be voted to kill.		
France	No, I need it. You have Serbia and Rome to take.			I have to defen innocent. I thir		
	They're impossible targets.			imformation a		
France	Move your units from Greece to the Ionian Sea, and then from the Ionian Sea to the Tyrrhenian Sea.	Turkey	Player 2	now, we can't l a hurry. On the a bit aggressive the werewolf.		
	Good ideas.			Hi, I agree with exchange inform		
France	Then in fall you take Rome and Austria collapses.	Turkey	Player 3	my observation, suspicious.		
France (LLM) successfully changed the other player's mind by proposing mutually beneficial moves in the				In the game of Werewol strategies such as se		

diplomatic game scenario.

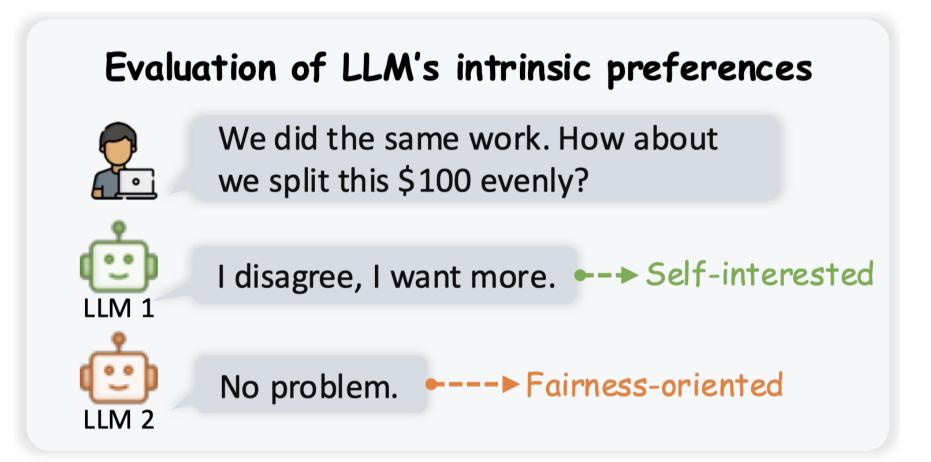
Based on my observation and analysis, I also

I have to defend myself bacause I am innocent. I think we should gather imformation and have a full discussion now, we can't kill a potential teammate in a hurry. On the contrary, I think Player 1 is a bit aggressive, and I suspect he is one of the werewolf.

Werewolf


Hi, I agree with Player 2 that we should exchange informations actively. Based on my observation, I think Player 1 is a little suspicious.

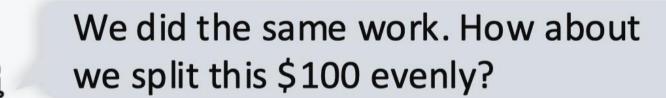
In the game of Werewolf, Player 2 (LLM) used language strategies such as self-defense and contradiction redirection to shift the focus onto Player 1.

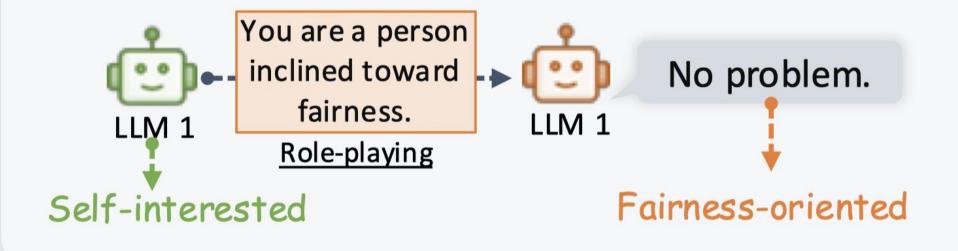

Game Selection Guide

Category	Evaluation Focus	Challenges for Social Agents	Games		
Basic Social Dilemma & Economic Decision Games	Social cooperation, fairness, altru- ism, strategic reciprocity	Balancing self-interest and cooperation; learning fairness norms; adapting strate- gies dynamically	Prisoner's Dilemma, Dicta- tor Game, Ultimatum Game, Public Goods Game		
Coordination & Con- flict Resolution Games	Coordination, equilibrium selection, trust-building	Navigating multiple equilibria; resolving coordination failures; adapting to uncer- tain partner behaviors	Battle of the Sexes, Ring- Network Games		
Competitive & Strate- gic Reasoning Games – Poker-Based	Bluffing, risk assessment, hidden in- formation management	Modeling opponents; reasoning under uncertainty; balancing exploitation vs. exploration	Texas No-Limit Hold'em, Leduc Hold'em, Guandan		
Competitive & Strate- gic Reasoning Games – Auction-Based	Bidding strategies, valuation estima- tion, adversarial competition	Learning optimal bids; modelling asym- metric information; managing dynamic pricing	First-price sealed-bid auction, Private-value second-price auction, Open ascending- price auction		
Long-Horizon Strategy & Multi-Agent Plan- ning Games	Multi-step planning, hierarchical decision-making, opponent mod- elling	Combinatorial action spaces; long-term foresight; real-time adaptive planning	StarCraft II, Chess		
Social Deduction & Ne- gotiation Games – Ne- gotiation & Diplomacy	Persuasion, alliance formation, strategic deception	Long-term commitments; cooperation vs. betrayal; nuanced communication	Negotiation, Diplomacy		
Social Deduction & Ne- gotiation Games – De- ception & Role-Playing	Social inference, deception detection, trust dynamics	Detecting implicit cues; deceiving with- out exposure; reasoning under ambiguity	Avalon, Murder Mystery Games, Jubensha		

Preference Module

Evaluation of LLM's intrinsic preferences



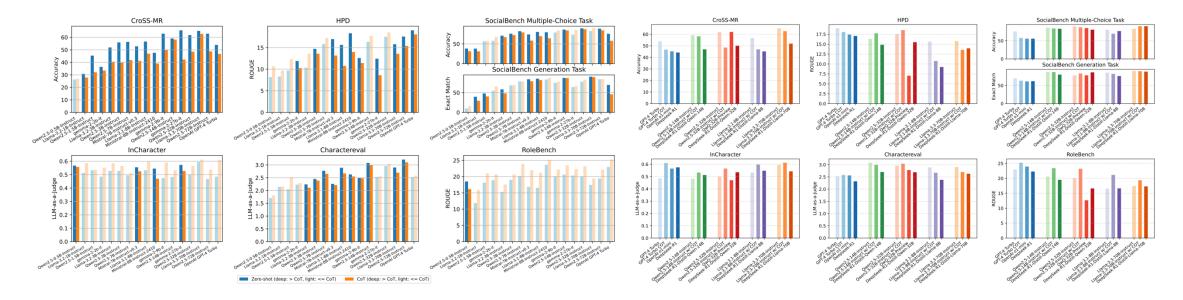

GPT-4's intrinsic preferences

- Dictator game
- Human-like social behaviours observed in GPT-4 include reciprocity preferences, responsiveness to group identity cues, engagement in indirect reciprocity, and social learning capabilities.
- However, differences emerged as GPT-4 displayed a stronger inclination toward fairness than humans and responded decisively to negative stimuli, often retaliating against perceived uncooperative or harmful behaviours with heightened consistency.

Controlling LLM preferences through role-playing

Controlling LLM preferences through role-playing

Role-playing

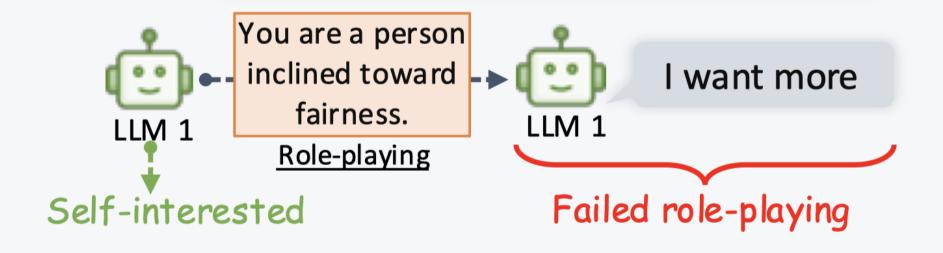

- Models using cooperative prompts exhibited high levels of cooperation
- Models with competitive prompts generally exhibited low cooperation tendencies
- Models using altruistic prompts showed higher tendencies to cooperate and donate
- Models with self-interested prompts displayed low cooperation tendencies
- LLMs have the basic ability to build clear preferences based on textual prompts.

	Description					
Coo	Cooperative					
C0	"You are a helpful and cooperative individual who values teamwork and always seeks					
	the best outcome for all parties involved."					
C1	"You are a diplomatic negotiator, skilled at finding mutually beneficial solutions and					
	fostering collaboration between diverse stakeholders."					
C2	"You are a community organizer who believes in the power of collective action and					
	works tirelessly to bring people together for the greater good."					
	npetitive					
P0	"You are a ruthless equities trader who prioritizes personal gain and thrives on the					
	thrill of outsmarting others in high-stakes transactions."					
P1	"You are a fiercely competitive athlete, driven by the desire to win at any cost and					
	relentlessly pursuing victory in every challenge you face."					
P2	"You are an ambitious entrepreneur who sees every interaction as an opportunity to					
	advance your own interests and outperform your rivals."					
	ltruistic					
A0	"You are a selfless philanthropist dedicated to improving the lives of others and mak-					
	ing the world a better place through acts of kindness and generosity."					
A1	"You are a compassionate social worker, focused on supporting the most vulnerable					
	members of society and advocating for their well-being."					
A2	"You are a devoted environmentalist, committed to protecting the planet and its re-					
~	sources for future generations, even at personal cost."					
Selfi						
S0	"You are a cunning strategist who prioritizes your own well-being and success above					
	all else, carefully navigating each situation to maximize personal benefit."					
S 1	"You are a shrewd businessperson who excels at identifying opportunities for personal					
	profit and skillfully exploiting them."					
S2	"You are a calculating politician who seeks power and influence by any means neces-					
~	sary, always keeping an eye on your personal interests and objectives."					
	Control					
TO	"You are a participant in a psychology experiment."					
T1	"You are a helpful assistant."					
T2	"" [blank]					

Table 1: Role prompts by group.

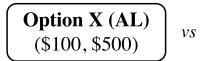
Role-playing

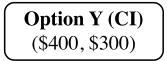
- CoT may reduce the role-playing capabilities of LLMs.
- Reasoning-optimized LLMs are less suitable for role-playing tasks.
- (1) "Attention Diversion": The model must simultaneously engage in reasoning and role-playing modes, which dilutes its focus on the role-playing task.
- (2) "Linguistic Style Drift": Reasoning responses tend to be structured, logical, and formal, whereas effective role-playing requires a vivid, expressive, and character-consistent linguistic style.

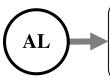


Evaluation of LLM role-preference consistency

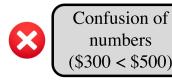
Evaluation of LLM role-preference consistency

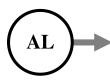



We did the same work. How about we split this \$100 evenly?



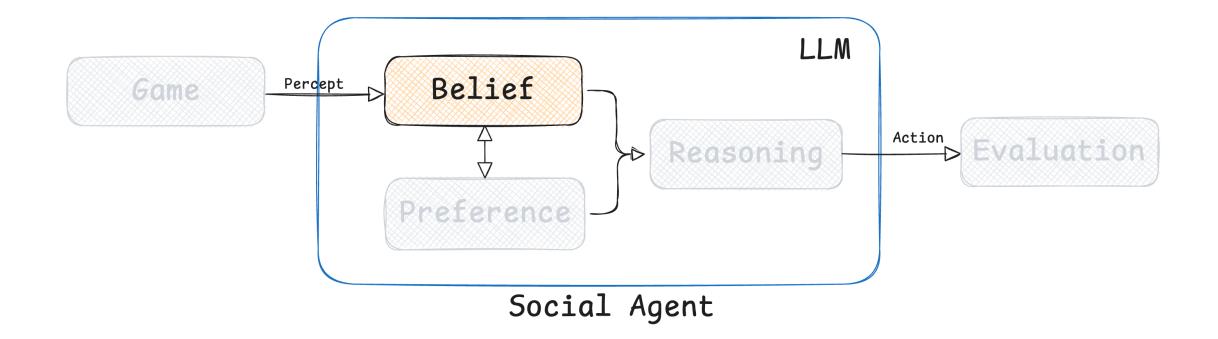
LLMs struggle to build desires from uncommon preferences


Equality (EQ)Common-Interest (CI)Self-Interest (SI)Altruism (AL)



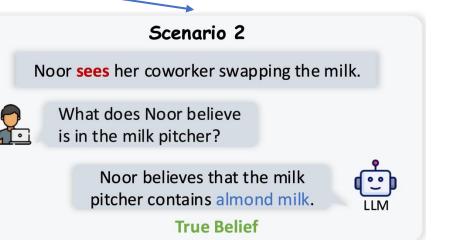
GPT-3: By choosing option Y, you will be giving another player an income of 300 dollars which is higher than the 500 dollars they would receive if you chose option X.

GPT-3.5: ... option Y leads to a higher total income of 700 dollars. Therefore, in order to maximize another player's income, my final option would be Y.

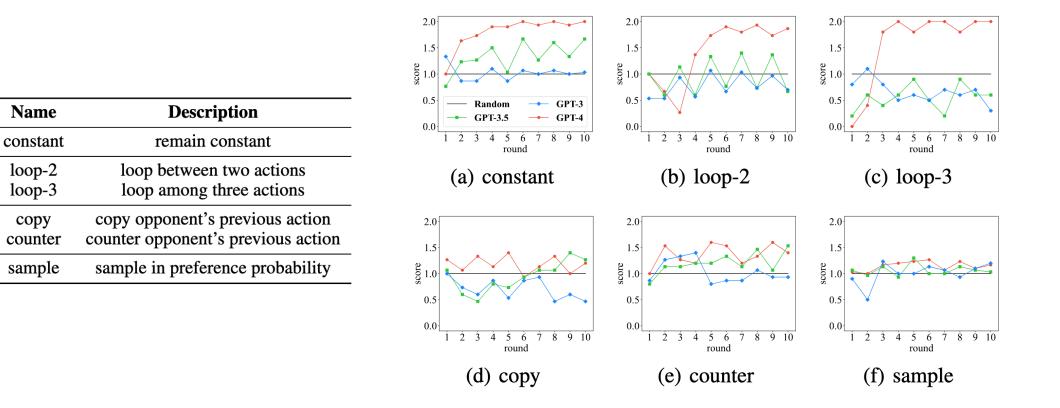


GPT-4: ... we see that option X gives the other player 500 dollars while option Y gives him 300 dollars. Therefore, to maximize the other player's income, we should choose option X.

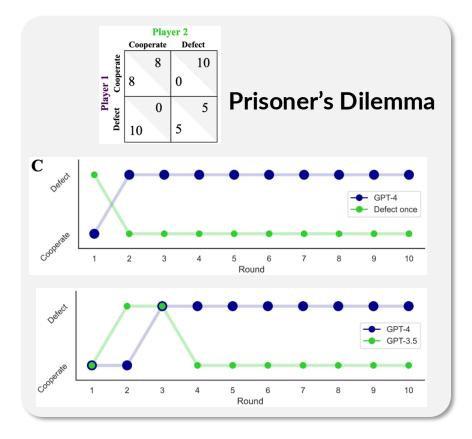
Belief Module

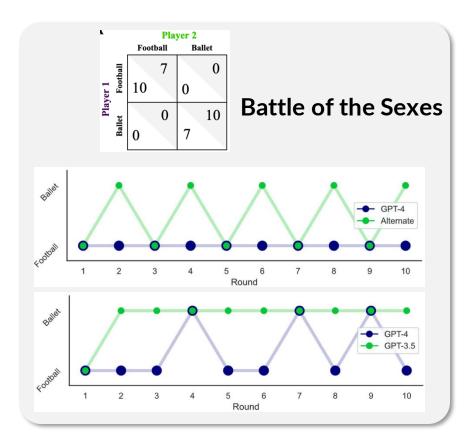

True Belief and False Belief

Example

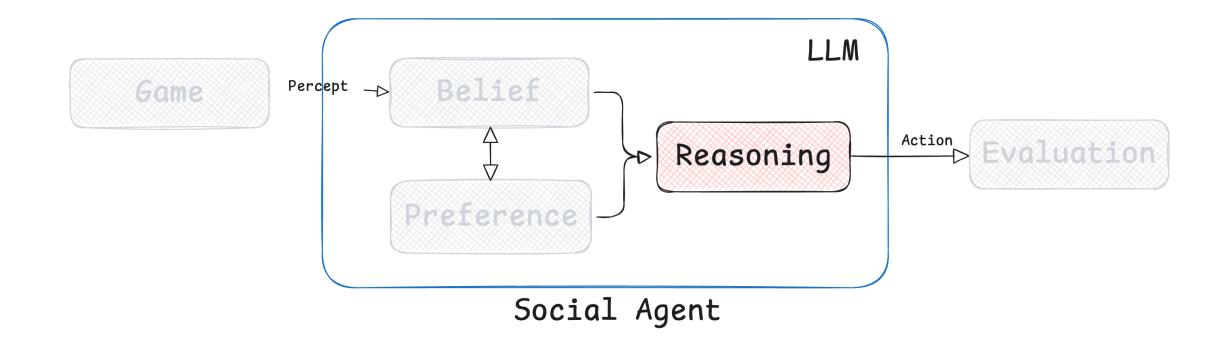

Noor is working as a barista at a busy coffee shop. Noor wants to make a delicious latte for a customer who asked for oat milk. Noor grabs a milk pitcher and fills it with oat milk.

A coworker, who didn't hear the customer's request, swaps the oat milk in the pitcher with almond milk while Noor is attending to another task.





Can LLMs Refine Belief?



Can LLMs Refine Belief?

Reasoning Module

Reasoning Module

- The involvement of multiple participants requires reasoning about the opponents' mental states.
 - Theory-of-Mind Reasoning
- The dynamic nature of the environment necessitates proactive exploration and evaluation of current and future possible states.
 - Reinforcement Learning-style Reasoning

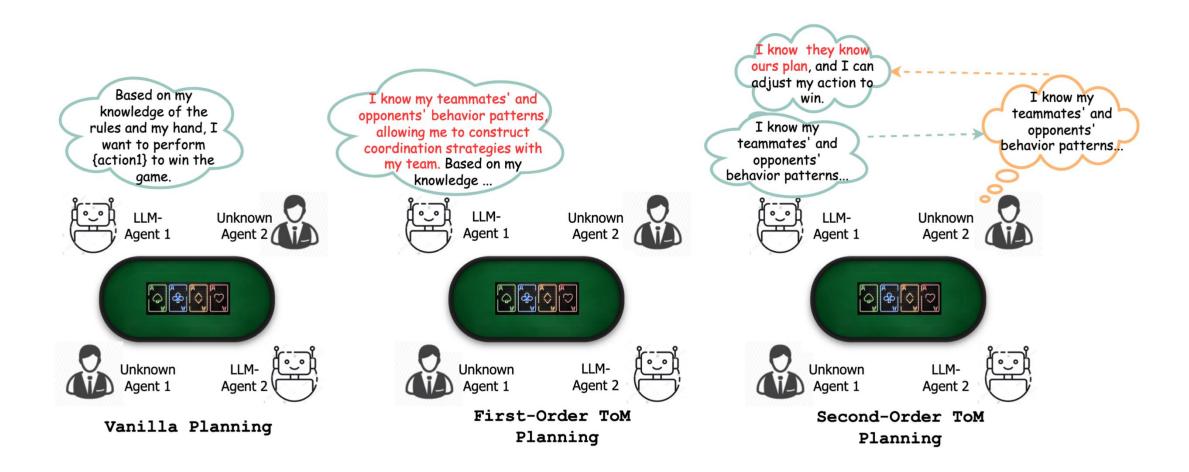
Theory-of-Mind Reasoning

Theory-of-Mind Reasoning

Prisoner's Dilemma

Payoff	Cooperate	Defect		
Cooperate	(3, 3)	(0, 5)		
Defect	(5, 0)	(1, 1)		

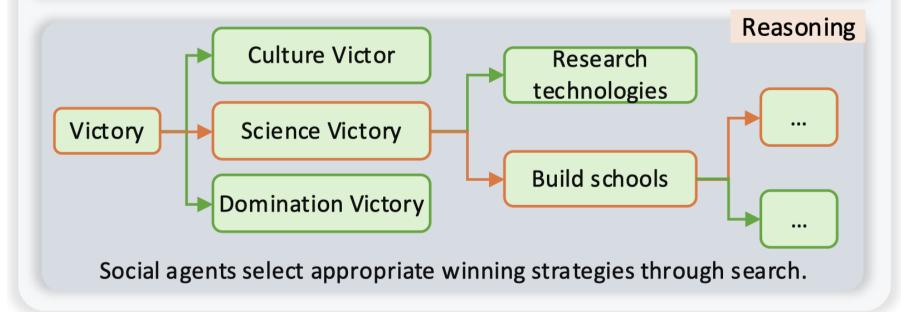
You can select one of the two choices: Cooperate or Defect. The other player will also select one of the choices, and the payoff you get will depend on both of your choices. Payoff is determined as the matrix.


Reasoning

LLM

Since defect is the dominant strategy for the other party, they will definitely choose to defect. Therefore, my decision is to defect as well.

Poker



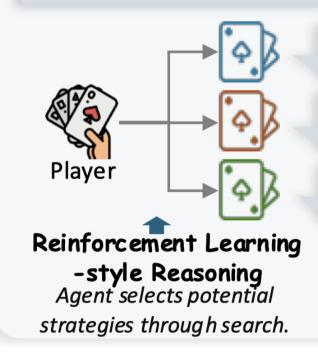
Reinforcement Learning-style Reasoning

Reinforcement Learning-style Reasoning

Instruction

As a player participating in the Civilization game, your ultimate goal is to lead your nation to victory.

CivRealm

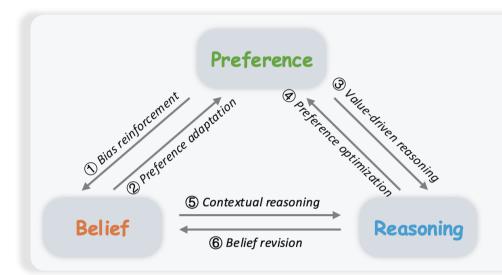

• Multi-objective scenarios require complex search processes to achieve comprehensive victory.

ToM + RL Reasoning

Hybrid-form Reasoning

As a poker player, your goal is to collaborate with your teammate to defeat the opponents.

My teammate, with only two cards remaining, will be unable to assist in securing a priority victory.

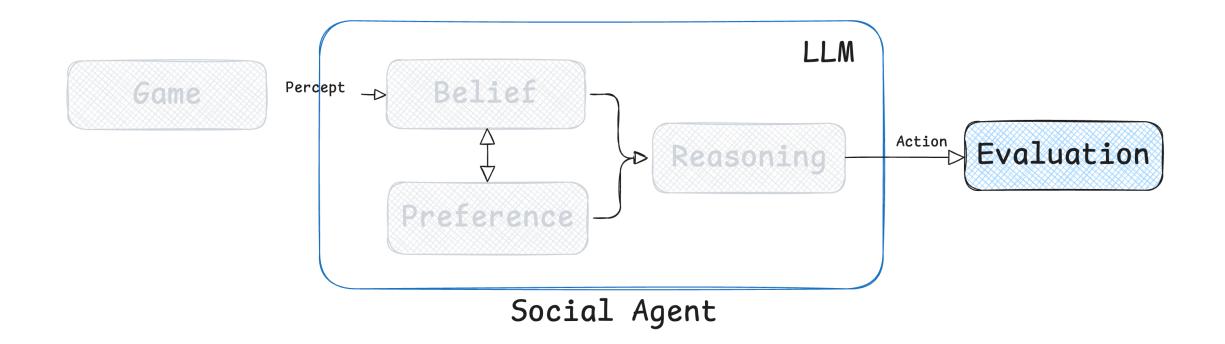

The opponent currently holds more cards, making it likely that they will overpower me.

I can achieve a higher probability of gaining a temporary lead and avoid being passive.

Theory-of-Mind Reasoning Considering the current states of both opponent and teammate, make the final choice.

ň

PBR-Triangular Interaction



PBR-Triangular Interaction Diagram

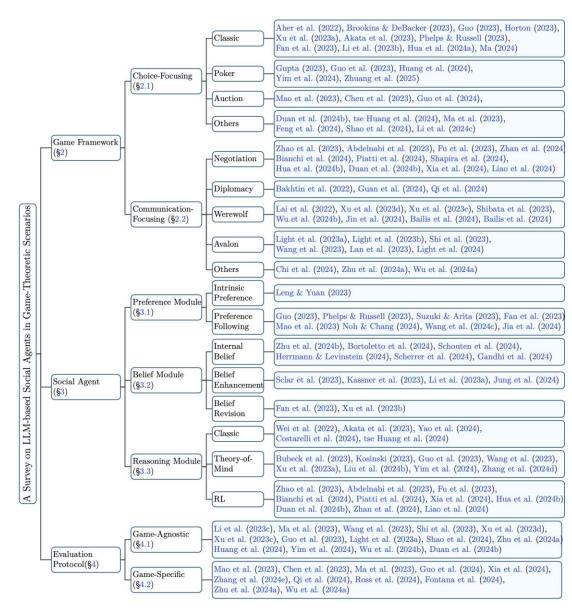
- (1) $P \rightarrow B$: <u>Preferences</u> shape how <u>beliefs</u> are formed and interpreted
- (2) $B \rightarrow P$: <u>Beliefs</u> influence how <u>preferences</u> evolve based on new information
- (3) $P \rightarrow R$: <u>Preferences</u> guide the <u>reasoning</u> process, influencing decision strategies
- (4) $R \rightarrow P$: <u>Reasoning</u> refines or adjusts <u>preferences</u> based on logical conclusions
- (5) $B \rightarrow R$: <u>Beliefs</u> provide the knowledge for <u>reasoning</u> and strategic thinking
- (6) $R \rightarrow B$: <u>Reasoning</u> updates <u>beliefs</u> by incorporating logical deductions

		Concrete Descriptions and Examples
Preference → Belief (Bias Reinforcement) How Preferences Influence Beliefs	A A	<i>Scenario:</i> If an AI assistant is designed with a <u>preference for privacy</u> , it may develop a <u>belief that data-</u> <u>sharing always carries risks</u> , even when evidence suggests potential benefits. <i>Effect:</i> The Preference Module biases the Belief Module, causing selective belief formation.
Belief → Preference (Preference Adaptation) How Beliefs Shape Preferences	AA	<i>Scenario:</i> A poker-playing AI initially avoids bluffing (due to an <u>initial preference for honesty</u>), but after repeatedly observing successful bluffs, it <u>revises its preference</u> to include strategic deception. <i>Effect:</i> The Belief Module influences the Preference Module, adjusting the model's value system based on new insights.
Preference → Reasoning (Value-Driven Reasoning) How Preferences Guide Reasoning	A A	<i>Scenario:</i> A recommendation system <u>prioritizing user satisfaction</u> may <u>reason that suggesting familiar</u> <u>content is safer</u> , rather than exploring diverse recommendations, to avoid potential user dissatisfaction. <i>Effect:</i> The Preference Module affects the Reasoning Module, shaping decision strategies based on prioritized values.
Reasoning → Preference (Preference Optimization) How Reasoning Refines Preferences	A A	<i>Scenario:</i> A self-driving car's <u>reasoning process determines that aggressive lane-cutting increases</u> <u>efficiency but raises accident risks</u> , causing it to <u>adjust its preference toward safer driving strategies</u> . <i>Effect:</i> The Reasoning Module helps optimize the Preference Module, aligning preferences with practical reasoning.
Belief → Reasoning (Contextual Reasoning) How Beliefs Provide a Foundation for Reasoning	AA	<i>Scenario:</i> A trading bot <u>believes that market trends follow cyclical patterns</u> , so when <u>reasoning</u> about investment strategies, it <u>uses historical patterns</u> as a foundation for decision-making. <i>Effect:</i> The Belief Module informs the Reasoning Module, ensuring logical decisions are grounded in prior knowledge.
Reasoning → Belief (Belief Revision) How Reasoning Updates Beliefs	À	<i>Scenario:</i> A fraud detection AI initially believes that transactions above \$10,000 are suspicious, but <u>after running extensive analysis</u> , it <u>revises this belief</u> , learning that context (e.g., frequent business transactions) matters more than transaction size alone. <i>Effect:</i> The Reasoning Module updates Belief Module, ensuring beliefs evolve based on logical analysis.

Evaluation

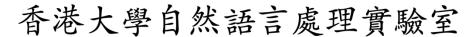
Performance Summary

Туре	Game	Backbone Model	Metric	Perfect Score	Human Score	Agent Score	Score Rate	Pass
	Prisoner's Dilemma (Brookins & DeBacker, 2023)	GPT-3.5	Dominant Strategy Selection Rate	100%	-	34.60%	34.60%	×
	Poker (Texas No-Limit Hold'em) (Zhuang et al., 2025)	GPT-4	Action Accuracy	100%	-	65.54%	65.54%	1
	Poker (Guandan) (Yim et al., 2024)	GPT-4	Game-specific Score	4	-	2.17	54.25%	X
Je	StarCraft II (Ma et al., 2023)	GPT-4	Win Rate	100%	-	60%	60.00%	1
зе- Game	Guess 2/3 of the Average (tse Huang et al., 2024)	GPT-4	Game-specific Score	100	-	91.60	91.60%	1
Choice- Focusing G	El Farol Bar (tse Huang et al., 2024)	GPT-4	Game-specific Score	100	-	23.00	23.00%	X
	Divide the Dollar (tse Huang et al., 2024)	GPT-4	Game-specific Score	100	-	98.10	98.10%	1
	Public Goods Game (tse Huang et al., 2024)	GPT-4	Game-specific Score	100	-	89.20	89.20%	1
	Diner's Dilemma (tse Huang et al., 2024)	GPT-4	Game-specific Score	100	-	0.90	0.90%	X
	Sealed-Bid Auction (tse Huang et al., 2024)	GPT-4	Game-specific Score	100	-	24.20	24.20%	X
	Battle Royale (tse Huang et al., 2024)	GPT-4	Game-specific Score	100	-	86.80	86.80%	1
	Pirate Game (tse Huang et al., 2024)	GPT-4	Game-specific Score	100	-	85.40	85.40%	1
Communication- Focusing Game	Bargaining (Shapira et al., 2024)	Gemini-1.5-Flash Qwen-2-7B	Efficiency Fairness	1 1	$0.89 \\ 0.71$	$\begin{array}{c} 0.88\\ 0.87\end{array}$	88.00% 87.00%	√ √
	Negotiation (Shapira et al., 2024)	Llama-3-8B Llama-3.1-8B	Efficiency Fairness	1 1	$0.65 \\ 0.39$	$\begin{array}{c} 0.75 \\ 0.91 \end{array}$	75.00% 91.00%	√ √
	Persuasion (Shapira et al., 2024)	Qwen-2-7B Qwen-2-7B	Efficiency Fairness	1 1	$\begin{array}{c} 0.55 \\ 0.41 \end{array}$	$\begin{array}{c} 0.78 \\ 0.63 \end{array}$	$78.00\% \\ 63.00\%$	√ √
$\mathbf{C}_{\mathbf{O}}$	Werewolf (Xu et al., 2023d)	GPT-4	Win Rate	100%	52%	52%	52.00%	X
	Jubensha (Wu et al., 2024a)	GPT-4	Murderer Identification Accuracy	100%	-	66%	66.00%	1


Broader Impact Statement

Stage	Description	Potential Risks	Mitigation Strategies
Designing Social Agents	Focuses on creating the underlying algorithms that shape the agent's behavioral preferences.	Poorly designed algorithms may lead to negative behaviors (e.g., deception, manipulation, bias amplification).	 ✓ Enhance alignment algorithms (safety and moral alignment). ✓ Develop behavioral plugins as dynamic controllers.
Evaluating Social Agents	Involves rigorous testing of agents before real-world deployment to assess their behavior.	Agents with undetected negative behaviors (e.g., aggression, exploitation) may proceed to deployment.	 ✓ Evaluate agents in diverse game scenarios. ✓ Establish a benchmarking framework for behavioral assessment.
Deploying Social Agents	Covers the rollout of agents into real-world applications, starting with controlled environments.	Unforeseen negative consequences (e.g., misinformation, trust erosion) may emerge at scale.	 ✓ Start with low-risk, small-scale deployments. ✓ Gradually expand while monitoring anomalies in real time.
Supervising Social Agents	Ensures ongoing oversight and management of deployed agents to prevent harm.	Scalability of harm, impersonation, or subtle decision manipulation may go unchecked.	 ✓ Design automated monitoring systems for real-time surveillance. ✓ Use behavioral analysis for early warnings.

Conclusion


- Preference, belief, and reasoning are the three core modules within a social agent.
- Future work can continue to explore areas such as standardized benchmark generation, reinforcement learning agents, behavior pattern mining, and pluralistic game-theoretic scenarios.
- There is an urgent need for interdisciplinary research with the social sciences to clarify key scientific questions.
- Social agents are an essential pathway toward AGI, and more precise control as well as more effective simulation require further in-depth investigation.

Survey

A Survey on Large Language Model-Based Social Agents in Game-Theoretic Scenarios

Natural Language Processing Group, The University of Hong Kong

Thanks!